

## Number and Place Value

## In the Australian Curriculum

-Janine McIntosh: janine@amsi.org.au
-Michael O'Connor: moconnor@amsi.org.au

## Number and Place Value

 What is Number?How are whole numbers, fractions and decimals connected?

What do we understand by the term Place Value?

What order and sequence best facilitates understanding of place value?

## Number and Place Value In the Australian Curriculum

There is a Sub-Strand called Number and Place Value

There are also Number concepts in other sub-stands that will play important roles in understanding as students progress through the years.

## Number and Place Value

Names numbers in sequences,
F Number and Place Valueinitially to and from 20, moving
from any starting point
Connects numbers names,
numerals, and quantities,
including zero, initially up to 10 and then beyond

Subitises recognises the number
of objects in a collection without consciously counting) small
collections of objects
Uses words such as "more",
"less", "same as" to compare
F Number and Place Value and order items, to 20, and gives ACMNA289 reasons
Uses words such as "first" and
F Number and Place Value "second" to indicate ordinal
position
F Number and Place Value
Represents practical situations to model addition and sharing

ACMNA001

-

ACMNA002

ACMNA003

## Why is subitising so important?

> It is an indication, often the first indication, of internalisation of number generally and individual numbers specifically.

## Number and Place Value

Number and Place Develops confidence with number sequences to and from 100 by ones from
Value any starting point. Skip counts by twos, fives and tens starting from zero

Number and Place Recognises, models, reads, write and order numbers to at least 100. Locates Value these numbers on a number line

Number and Place Counts collections to 100 by Partitioning numbers using place value. Value Understands the importance of grouping in tens

Number and Place Understands that 2 digit numbers are comprised of tens and ones
Value

Number and Place Represents and solves simple addition and subtraction problems using a range Value of strategies including counting on, partitioning and rearranging parts

Number and Place Value

Fractions and Decimals

Patterns and Algebra

Patterns and Algebra

Develops a range of mental strategies for addition and subtraction problems

## Number and Place Value

Investigates number sequences, initially those increasing and decreasing by twos, threes, fives and ten from any starting point, then moving to other sequences

Number and Recognises, models, represents and orders Place Value numbers to at least 1000

Groups, partitions and rearranges collections up to 1000 in hundreds, tens and ones to facilitate more efficient counting

Number and
Understands three-digit numbers are comprised of hundreds, tens and ones

Partitions numbers to understand the connection between addition and subtraction

Number and
Place Value
Uses counting-on to identify the missing element in an addition problem

ACMNA029

Solves simple addition and subtraction problems using a range of efficient mental and Number and Place Value addition (order does not affect result $-5+3$ is the same as $3+5$ ), building to 10 (rainbow facts), doubles, 10s facts, and adding 10

Models and represents simple addition problems using materials such as 10 frames,

ACMNA030

Number and Recognises and represents multiplication as
Place Value repeated addition, groups and arrays

Recognises and represents division as
grouping into equal sets and solves simple problems using these representations

Identifies the difference between dividing a set of objects into three equal groups and dividing the same set of objects into groups of three

Recognises and interprets common uses of halves, quarters and eighths of shapes and collections
Recognises that sets of objects can be
Fractions and portioned in different ways to demonstrate fractions

Fractions andRelates the number of parts to the size of a Decimals fraction

Money and Counts and orders small collections of
Financial Australian coins and notes according to their Mathematics value

Money and
Identifies equivalent values such as $2 \times 5 c$ Mathematics coins has the same value as $1 \times 10 \mathrm{c}$ coin

Patterns and Describes patterns by skip counting (in $2 \mathrm{~s}, 5 \mathrm{~s}$, Algebra 10s) and identifies missing elements

ACMNA032

ACMNA033
ACMNA033

ACMNA033

ACMNA034

ACMNA034

## Number and Place Value

> Number and

Investigates the conditions required for a number to be odd or even and identifies odd and ACMNA051 even numbers

Number and Recognises, models, represents and orders Place Value numbers to at least 10000

ACMNA052

Number and Places four digit numbers on a number line Place Value using an appropriate scale

ACMNA052

Applies place value to partition, rearrange and Number and
Place Value regroup numbers to at least 10000 to assist calculations and solve problems.
Recognises that 10000 equals 10 thousands, 100 hundreds, 1000 tens and 10000 ones

Recognises and explains the connection Number and between addition and subtraction by using Place Value portioning or by writing equivalent number sentences
Recalls addition facts for single-digit numbers Number and and related subtraction facts to develop Place Value increasingly efficient mental strategies for computation

Recognises that certain single-digit number combinations always result in the same answer for addition and subtraction and using this knowledge for addition and subtraction of larger numbers strategies and appropriate digital Technologies
Partitions areas, lengths and collections to create halves, thirds, quarters and fifths, such

Represents and solves problems involving multiplication (for example, writing simple
Number and Place Value ord problems in numerical form and vice versa) using efficient mental and written

ACMNA057
Number and Recalls multiplication facts of two, three five Place Value and ten and related division facts comparing the number of parts with their sizes
Fractions and Decimals
Locates unit fractions on a number line
Money and Represents money values in multiple ways Financial and counts the change required for simple Mathematics transactions to the nearest five cents

Money and
Financial Mathematics

Recognises the relationship between dollars and cents and that not all countries use these denominations and divisions (for example Japanese Yen)

Using Units of Measurement

Recognises and uses centimetres and meters, grams and kilograms and millilitres and litres.

ACMNA058

ACMNA059

## Number and Place Value

4 Number and Investigates and uses the properties of odd Place Value and even numbers

4 Number and Reproduces five-digit numbers in words using Place Value their numerical representations, and vice versa

Applies place value to partition, rearrange and regroup numbers to at least tens of thousands to assist calculations and solve problems

Recognises and demonstrates that the placevalue pattern is built on the operations of multiplication or division of tens

ACMNA073

Fractions and
Decimals

Develops efficient mental and written strategies (for example, commutativity, doubling and halving) and uses appropriate digital technologies for multiplication and for division where there is no remainder

Investigates equivalent fractions by exploring
Fractions and

## Decimals

 reationship between families of fractions (halves, quarters and eights or thirds and sixths) by folding a series of paper strips to construct a fraction wall for exampleFractions Counts by quarters halves and thirds, including and with mixed numerals. Locate and represent
Decimals these fractions on a number line
Coverts mixed numbers to improper fractions and vice versa

Recognises that the place value system can be extended to tenths and hundredths. Make connections between fractions and decimal notation

4 Number and Investigates number sequences involving Place Value multiples of $3,4,6,7,8$, and 9

ACMNA074

4 Number and Recalls multiplication facts up to $10 \times 10$ and Place Value related division facts

## Number and Place Value

5 Number and
Identifies and describes factors and multiples of whole numbers and uses them to solve ACMNA098 problems

5 Number and Place Value

Applies mental strategies to estimate the results of calculations such as estimating the ACMNA099 cost of a supermarket trolley load

Solves problems involving multiplication of large numbers by one- or two-digit numbers

5 Number and Place Value

Fractions Compares and orders common unit fractions and and locates and represents them on a number ACMNA102
Decimals line
Investigates strategies to solve problems
Fractions involving addition and subtraction of fractions and with the same denominator for example using

ACMNA103
Decimals jumps on a number line or making diagrams of fractions as parts of shapes

Fractions Recognises that the number system can be and extended beyond hundredths (thousandths and ACMNA104 Decimals beyond)
Fractions
Compares, order and represent decimals by
Decimals locating them on a number line

Fractions Recognises that the number of digits after the and decimal place is not equivalent to the value of Decimals the fraction

Patterns Describes, continues and creates patterns with and fractions, decimals and whole numbers
Algebra resulting from addition and subtraction
Patterns Uses number lines or diagrams to creates and patterns involving fractions or decimals
Algebra
ACMNA107

Choose appropriate units of measurement for
Using Unitslength, area, volume, capacity and mass
of recognising that some units of measurement
5 Measurem are better suited for some tasks than others, for
ACMMG108 ent example, $k m$ rather than $m$ to measure the distance between two towns

## Number and Place Value

6 Number and Identifies and describes properties of prime, composite, Place Value square and triangular numbers

Number and Place Value

Represents composite numbers as a product of their prime factors and using this form to simplify calculations by cancelling common primes

6 Number and Place Value

Selects and applies efficient mental and written strategies and appropriate digital technologies to solve problems involving all four operations with whole numbers

Fractions and Solves problems involving addition and subtraction of Decimals fractions with the same or related denominators

Models and solves additive problems involving fractions by using methods such as jumps on number line, or by making diagrams of fractions as parts of shapes (

Fractions and Finds a simple fraction of a quantity where the result is a Decimals whole number, with and without digital technologies

ACMNA127
Solves everyday addition problems involving positive and negative integers without developing formal rules for the operations (for example, using a number line and counting to find the resulting outside temperature if it is $5^{\circ} \mathrm{C}$ at 7 pm and drops by $8^{\circ} \mathrm{C}$ overnight)

Fractions and Compares fractions with related denominators and locates Decimals and represents them on a number line
ractions and Adds and subtracts decimals, with and without digital Decimals technologies, and use estimation and rounding to check the reasonableness of answers

Multiplies decimals by whole numbers and perform divisions that result in terminating decimals. This Mathematics technologies

6 Patterns and Continue and create number patterns involving whole numbers, fractions and decimals.

6 Fractions and Use and explain the use of multiplication and division by Decimals powers of 10 to multiply decimal numbers mentally

ACMNA130

Connecting fractions, decimals and percentages as exibly between representations, and choosing the appropriate one for the problem being solved

Money and Investigate and calculate percentage discounts of 10\% Financial $25 \%$ and $50 \%$ on sale items, with and without digital

ACMNA132
Fractions and includes interpreting and representing the remainder in Decimals division calculations appropriate to the context (eg $6.5 \div 4$ is sensibly expressed as 1.625 km if dividing 6.5 km into 4 equal legs or $\$ 1.63$ if dividing $\$ 6.50$ by 4 )

ACMNA131 ACMNA132

## Number and Place Value

Investigate index notation and represent whole numbers as products of powers of prime numbers.
Number Define and compare prime and composite numbers.
7 and Place Express whole numbers as products of powers of Value prime factors such as creating factor trees. Solve problems involving lowest common multiples and highest common factors

Investigate and use square roots of perfect square
Number numbers such as 25 and 36 and develop square
7 and Place root notation. Investigate between which two whole
Value numbers a square root lies (eg: a $\sqrt{ } 10$ lies between 3 and 4)

Apply the associative law:
$(2+3)+5=2=(3+5)$ and
$(2 \times 3) \times 5=2 \times(3 \times 5)$,
Number
7 and Place
Value $2 \times 3=3 \times 2$ and $2+3=3+2$
And distributive laws
$18 \times 17=8 \mathrm{X}(10+7)=8 \times 10+8 \times 7$
$=80+56=136$
Number Compare and order integers (positive and negative 7 and Place whole numbers), add and subtract integers with the Value aid of a number line. (eg: $-2+-3=-5$ )

Compare fractions using equivalence, (for example, Numbers by using a fraction wall or a number line $2 / 3$ is the same as $4 / 6$ and 6/9).

## 7 Real Numbers

ACMNA149

ACMNA150

ACMNA151

7 Real Numbers

7 Real 7 Numbers

7 Real
7 Numbers

7 Real Numbers
$7 \begin{aligned} & \text { Real } \\ & \text { Numbers }\end{aligned}$

Solve problems involving addition and subtraction of fractions, including those with unrelated denominators

Multiply and divide fractions and decimals using strategies including patterning and multiplication as repeated addition with both concrete materials and digital technologies, and identifying the processes for division as the inverse of multiplication.

Express one quantity as a fraction of another, with and without the use of digital technologies

ACMNA155

Round decimals to a specified number of decimal places

Connect fractions, decimals and percentages and carry out simple conversions

Find percentages of quantities and express one quantity as a percentage of another, with and without digital technologies.

## Number and Place Value

| 8 | Number and Place Value | Use index notation with numbers to establish the index laws with positive integral indices and the zero index | ACMNA182 |
| :---: | :---: | :---: | :---: |
| 8 | Number and Place Value | Carry out the four operations with rational numbers and integers, using efficient mental and written strategies and appropriate digital technologies | ACMNA183 |
| 8 | Real Numbers | Investigate terminating and recurring decimals | ACMNA184 |
| 8 | Real Numbers | Investigate the concept of irrational numbers, including $\pi$ | ACMNA186 |
| 8 | Using Units of Measurement | Choose appropriate units of measurement for area and volume and convert from one unit to another. | ACMMG195 |

## Number and Place Value

| 9 | Real Numbers | Apply index laws to numerical expressions with integer indices. Use index laws to simplify algebraic expressions, using both positive and negative integral indices. Apply understanding of negative indices to calculations. | ACMNA209 |
| :---: | :---: | :---: | :---: |
| 9 | Real Numbers | Express numbers in scientific notation. Represent extremely large and small numbers in Scientific notion and vice versa | ACMNA210 |
| 10 | Patterns and Algebra | Apply the four operations to simple algebraic fractions with numerical denominators <br> EG: <br> Solve a wide range of linear equations, including those involving one or two simple algebraic fractions, and check solutions by substitution | ACMNA232 |
| 10A | Real Numbers | Define rational and irrational numbers and perform operations with surds and fractional indices. <br> Understand that the real number system includes irrational numbers and that certain subsets of the real number system have particular properties. Apply the index laws to numeric and algebraic expressions and evaluating or simplifying them as required | 10 |

Number and Place Value Content

## Number and Place Value

## Prior knowledge

Children arriving for their first year of school may be able to:

- Recite the numbers up to 20 in order
- Write the numerals 0 to 9
- Grasp the connection between the

numeral ' 3 ', the word 'three' and a picture such as


## Number and Place Value

## Hindu Arabic Numerals

Hindu-Arabic numerals exhibit some of the qualities that make mathematics so powerful, namely

- they can be used by understanding a small number of ideas, and
- they can be generalized beyond the original setting for which they were devised.
(The notation was developed to express whole numbers, but it extends to the representation of fractions and decimals.)


## Number and Place Value

## Hindu Arabic Numerals

Hindu-Arabic numerals are a decimal, or base-ten, place-value number system with the ten digits $0,1,2,3,4,5,6,7,8$, and 9 as fundamental building blocks.

# Number and Place Value 

## Other Number Systems

What other number systems exist or have existed in the past?

What advantages does the Hindu-Arabic system have over the alternatives?

## Number and Place Value

## The Number System

Counting numbers or Natural numbers
$\{1,2,3,4,5,6,7, \ldots\}$
Whenever you add or multiply two counting numbers, you get another counting number. This may not be true when you subtract or divide (e.g., $4-7=-3$, and -3 is not a counting number even though 4 and 7 are).

# Number and Place Value 

## The Number System

Whole numbers

$$
\{0,1,2,3,4,5,6, \ldots\}
$$

These are the counting numbers, together with 0 .

# Number and Place Value 

## The Number System

## Integers

Positive and negative whole numbers

$$
\{\ldots-5,-4,-3,-2,-1,0,1,2,3,4,5,6, \ldots\}
$$

Note that you can add, subtract and multiply two integers and you will always get an integer, but you may have trouble with division (e.g., $3 \div 6=1 / 2$ ).

# Number and Place Value 

## The Number System

Rational numbers $\left\{\frac{m}{n}\right.$, where $m$ and $n$ are integers $\}$
For example, $\quad \frac{2}{3}, \quad \frac{7}{11}, \quad \frac{-34}{97}, \quad$ (all fractions)

$$
7=\frac{7}{1}, \quad-1000, \quad \text { (all integers) }
$$

0,
$0.15=\frac{15}{100}, \quad 0.555 \ldots=\frac{5}{9}($ some decimals $)$

## Number and Place Value

## The Number System

Rational numbers are just fractions.
Integers can always be written as fractions
In decimal form, the rationals are those numbers which terminate or those which have a recurring block.

Division of a rational by a rational always gives a rational (except that you can't divide by 0 ).

# Number and Place Value 

## The Number System

## Irrational numbers

Cannot be written in the form $\frac{\mathrm{m}}{\mathrm{n}}$, i.e, not rational.
Examples include:
$\pi=3.1415926535879 \ldots$,
0.101001000100001000001...,
$e=2.71828 . . .$,
$0.1234567891011121314151617 \ldots$
$\sqrt{2}=1.4142 \ldots$

## Number and Place Value

## The Number System

## Irrational numbers

The irrationals are those numbers that cannot be written as a fraction. In decimal form, the irrational numbers are precisely the non-recurring nonterminating decimals.
There are actually more irrational numbers than there are rational numbers.

## Number and Place Value

## The Number System

Real numbers The rational numbers together with the irrational numbers make up the real numbers. These are the numbers we use in everyday life.

## Complex numbers

[Learned in late high school or university, if at all. ]
There are numbers which help us deal with things like $\sqrt{ }$ - 5 (i.e. square roots of negative numbers). The real numbers can't do this. These are the numbers that make digital devices possible.

## Number and Place Value

## Learning Numbers

Even though the Number System is built up logically in this way, it is not how we learn or develop an understanding of numbers.

Both individually and historically, number sense follows a different path.

Counting (including 0)
Fractions
Decimals (Rationals)
Negatives
Irrationals

## Number and Place Value

## Learning to Count - History

Early counting was done via one-to-one correspondence.
The word calculus means stone. It is the root of the word calculation because shepherds used pebbles to count their sheep.

## Number and Place Value

## Ten as the basis of our place value system

Hindu-Arabic notation is a place value system based on bundles of 10 ; so it is a decimal system.

The key to a place value system is the use of a place marker.
A place value system using 9 digits and a space or the word kha (for emptiness) as place marker was used in India the 6th century.


## Number and Place Value

## Ten as the basis of our place value system

By the 9th century the system had made its way to the Arab world (including Persia and AI-Andalus in what is now Spain).

The digit 0 evolved from "." and was used in both Madhya Pradesh (Northern India) and the Arab world by the 10th century.

Leonardo Fibonacci learned to use the notation from merchants in Africa when he was a boy and wrote a book, Liber Abaci, in 1202 which popularized the system.

## Number and Place Value

## Learning to Count

Number is an abstract concept. Three is the concept of threeness.

## Numerals

A numeral is a symbolic representation of a number.
So 7,5+2, and VII are all numerals for the number we call seven;
10, 23-13 and $X$ are all numerals for the number we call ten.

## Number and Place Value

## Learning to Count

Recitation of a list of numbers is not necessarily counting.
Many children can recite the number names when they arrive at school.
Some of them may be able to recite them in order up to 20 or more.
It is likely, however, that some of them are only just beginning to understand that each numeral and its corresponding number word represent a quantity that is fixed.

## Number and Place Value

## Learning to Count

For children to be considered as having the ability to count, there are certain behaviours that must be evident;

Each of these behaviours is essential to counting.

## Number and Place Value

## Learning to Count

## Digits

We call the symbols $0,1,2,3,4,5,6,7,8$, and 9 digits. They are numerals consisting of a single symbol.
(It is not a coincidence that the same word means fingers.
Early counting was, and still is, done using fingers.)

## Number and Place Value

## Representation of a Number



Words

## Twenty One



Images
Up until this slide we have been using words, numerals and symbols or images for numbers, interchangeably.

It is only with the numeric notation that place value has obvious meaning and relevance.

Number and Place Value
Representation of a Number


# Number and Place Value 

## Representation of a Number

The digits 0 to 9 are to numbers
what the letters of the alphabet are to words.
With just ten symbols we can write down any number imaginable

## Number and Place Value

## Learning to Count

## One-to-one correspondence with number names and objects

What goes through your head when:
The understanding that we use different number names for each object included in a count is a major milestone.

A child who counts a set of objects by saying "four, two, one" has understood the need for one-to-one correspondence, as has the child who correctly counts "one, two, three".

A child who counts "three, two, three" has not used a unique number name for each object and neither has the child who uses more number names than objects and counts "one, three, six, seven, two, four" when counting these stars

## Number and Place Value

## Learning to Count

## Stable Order

To count accurately and reliably, it is important to say the number names in the right order and without skipping any.

The ability to assign the number names in order to objects being counted and without skipping any numbers, is known as the stable-order principle.

## Number and Place Value

## Learning to Count

## Counting objects in any order or arrangement

The number of elements in a set does not depend on the way the objects are presented or the order in which they are counted.

Knowing that the order in which objects are counted has no relevance to the actual number of objects in the group of objects is known as the order-irrelevance principle.

## Number and Place Value

## Learning to Count

## Cardinality

One of the deep observations about counting is that when you set up a 1-1 correspondence between the number names in their correct order and the set of objects you are trying to count, then the last number name you say is the cardinality (or size) of the set.

We can help children develop the understanding of cardinality by involving them in activities where they answer questions about 'how many'.

## Number and Place Value

## Learning to Count

## Ordering numbers

Ordering is the basis of our number system.
The ability to place quantities in order of increasing (or decreasing) size demonstrates a deep understanding of how the number system fits together.

Beginning with the idea of one more or one less, pre-school children become adept at moving around on a mental number line.

## Classroom

## Automaticity

Developing automaticity with number facts is the aim of many of the tasks we do with children.

The tasks themselves are not the aim.

To achieve this we need to help children pull apart numbers and put them back together again.

As children grow, tasks that require mental strategies need to become more cognitively demanding.

Children often develop these skills by themselves, other children need some gentle encouragement to do so.

## Classroom

## Ten as the basis of our place value system

Once the numbers below ten are established, the next goal is to look at the numbers from ten to twenty.

We want students to

- see the importance of ten

- start to use ten as a countable unit.


## Classroom

## Ten as the basis of our place value system

## Use a variety of materials


$\leftrightarrow$
 $\leftrightarrow$

## Classroom

## Ten as the basis of our place value system

- What does one hundred look like?



# Classroom 

## Number Charts

## 100 chart

Make tables in word
Make puzzles out of them
Go over the hundred
Extend to thousands

Number Ladder
Start at different numbers
Fill in the blanks

## Classroom

## Number Charts



| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ |
| $\mathbf{2 1}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ | $\mathbf{2 5}$ | $\mathbf{2 6}$ | $\mathbf{2 7}$ | $\mathbf{2 8}$ | $\mathbf{2 9}$ | $\mathbf{3 0}$ |
| $\mathbf{3 1}$ | $\mathbf{3 2}$ | $\mathbf{3 3}$ | $\mathbf{3 4}$ | $\mathbf{3 5}$ | $\mathbf{3 6}$ | $\mathbf{3 7}$ | $\mathbf{3 8}$ | $\mathbf{3 9}$ | $\mathbf{4 0}$ |
| $\mathbf{4 1}$ | $\mathbf{4 2}$ | $\mathbf{4 3}$ | $\mathbf{4 4}$ | $\mathbf{4 5}$ | $\mathbf{4 6}$ | $\mathbf{4 7}$ | $\mathbf{4 8}$ | $\mathbf{4 9}$ | $\mathbf{5 0}$ |
| $\mathbf{5 1}$ | $\mathbf{5 2}$ | $\mathbf{5 3}$ | $\mathbf{5 4}$ | $\mathbf{5 5}$ | $\mathbf{5 6}$ | $\mathbf{5 7}$ | $\mathbf{5 8}$ | $\mathbf{5 9}$ | $\mathbf{6 0}$ |
| $\mathbf{6 1}$ | $\mathbf{6 2}$ | $\mathbf{6 3}$ | $\mathbf{6 4}$ | $\mathbf{6 5}$ | $\mathbf{6 6}$ | $\mathbf{6 7}$ | $\mathbf{6 8}$ | $\mathbf{6 9}$ | $\mathbf{7 0}$ |
| $\mathbf{7 1}$ | $\mathbf{7 2}$ | $\mathbf{7 3}$ | $\mathbf{7 4}$ | $\mathbf{7 5}$ | $\mathbf{7 6}$ | $\mathbf{7 7}$ | $\mathbf{7 8}$ | $\mathbf{7 9}$ | $\mathbf{8 0}$ |
| $\mathbf{8 1}$ | $\mathbf{8 2}$ | $\mathbf{8 3}$ | $\mathbf{8 4}$ | $\mathbf{8 5}$ | $\mathbf{8 6}$ | $\mathbf{8 7}$ | $\mathbf{8 8}$ | $\mathbf{8 9}$ | $\mathbf{9 0}$ |
| $\mathbf{9 1}$ | $\mathbf{9 2}$ | $\mathbf{9 3}$ | $\mathbf{9 4}$ | $\mathbf{9 5}$ | $\mathbf{9 6}$ | $\mathbf{9 7}$ | $\mathbf{9 8}$ | $\mathbf{9 9}$ | $\mathbf{1 0 0}$ |

## Classroom

## Number Charts



## Classroom

## Ten as the basis of our place value system



## Classroom

## Ten as the basis of our place value system

## Place Value houses

## Mansions

## Houses

## Tents



## Classroom

## Ten as the basis of our place value system



## Cushions?

Or the world's largest abacus?

## Classroom

## The Number Line

The number line can be used as a model for number from the first years of primary school through to the early years of secondary schooling. It is a model that can be consistently applied in most areas of number.

- Comparing
- Modelling
- Ordering
- Operations


## Classroom

## The Number Line

Like subitising and automatic recall of addition and multiplication facts, internalising the number line is a significant step toward understanding and being able to manipulate numbers.

Having an accurate internal number line gives confidence in the position and relationship between different numbers of all sorts.

## Classroom

## The Number Line

Introducing the number line

- Mark in zero and one other reference point
- Convention of negative numbers to the left, zero in the middle and positive numbers to the right
- Move towards children drawing their own

Step through the introduction of the number line very slowly
Do not assume this has been done before
Remind the children all the time, where is the one?

## Classroom

## The Number Line

## Use

- Masking tape on the floor
- String across the room
- Chalk in the playground
- Magnetized numbers on a blackboard or whiteboard
- Cash-register rolls
- Number ladder



## Classroom

## The Number Line

Put a cross where one hundred would be on this number line.

0
1000


## Classroom

## Today's Number

Tools session idea:
Today's number is... from MCTP

## Classroom

## Today's Number

Use often to

- Reinforce number facts
- Engage students in thinking about strategies
- Allow students to pull apart and then reconstruct numbers

Use it to

- Settle and focus students
- Allow all students time to respond.
- Pre-test and post-test by counting number of facts in a minute with extra points for FAT facts.
- Insist on certain strategies. For example, students must include multiplying with fractions.


## Classroom

## Number Between

A good way to introduce the idea of the infinite nature of the place value system.

Give me a number between 0 and 1000.

Now give me a number between 0 and $\qquad$ .
$\qquad$ .

## Teaching Strategies <br> Number Between

- can be used for whole numbers, fractions and decimals
- shows students the density of decimals
- use a blank number line and choose two end points
- select two students and in turns, ask them to write a number in between the two end points
- rub off an end point once a new number has been written


## Classroom

## Ten as the basis of our place value system

## Place Value houses



## Classroom

## Ten as the basis of our place value system

- What does one tenth look like?


## Classroom

## Ten as the basis of our place value system

- What does one hundredth look like?

(1)
$=$
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 000000000 0000000000 0000000000


## Fractions

## Fractions come before Decimals in the Curriculum

It is only at grade 4 that decimals are introduced and then it is after exploring the relationships between families of fractions.

Build up to tenths in fractions and only then bring in the concept of decimal notation.

It is also worth noting that it is also at grade 4 that the idea of place value is built on multiplication and division of ten (powers of ten)

## Fractions

## Fraction Families

Just like real families, fraction families are related to each other by their similarities.
The Halves Family (can be created just by paper folding)


## Fractions

## Fraction Families

## The Thirds Family (needs measurement and paper folding)

Start by using a strip of paper that is 90 cm long. This gives thirds that are thirty cm long, or the length of a standard ruler. An extension at a later time is to use 120 cm strips of paper, and thus thirds of 40 cm .

|  | $\frac{1}{3}$ |  |  | $\frac{2}{3}$ |  |  | $\frac{3}{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{6}$ |  | $\frac{2}{6}$ | $\frac{3}{6}$ |  | $\frac{4}{6}$ | $\frac{5}{6}$ |  |
| $\frac{1}{9}$ | $\frac{2}{9}$ | $\frac{3}{9}$ | $\frac{4}{9}$ | $\frac{5}{9}$ | $\frac{6}{9}$ | $\frac{7}{6}$ |  |
|  |  | $\frac{7}{9}$ | $\frac{8}{9}$ | $\frac{9}{9}$ |  |  |  |

## Fractions

## Fraction Families

The Fifths Family (needs measurement and paper folding) Strips of length 120 cm

Once the tenths have been explored it is possible to discuss how they can be written as decimals.

1

| $\frac{1}{5}$ |  | $\frac{2}{5}$ | $\frac{3}{5}$ |  | $\frac{4}{5}$ | $\frac{5}{5}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{10}$ | $\frac{2}{10}$ | $\frac{3}{10}$ | $\frac{4}{10}$ | $\frac{5}{10}$ | $\frac{6}{10}$ | $\frac{7}{10}$ | $\frac{8}{10}$ | $\frac{9}{10}$ | $\frac{10}{10}$ |

## Number and Place Value

## Decimals

Decimals are fractions written in Place Value notation.

$$
\begin{aligned}
& \frac{1}{10} \text { is } 0.1 \\
& \frac{1}{100} \text { is } 0.01 \\
& \frac{1}{1000} \text { is } 0.001
\end{aligned}
$$

When the denominator of a fraction is a power of 10 , writing the decimal form is easy and straight forward.

When the denominator is not a power of 10, conversion becomes more complicated.

## Number and Place Value

## Converting between Fractions and Decimals

Convert these fractions to decimals

$$
\begin{array}{llll}
\frac{1}{2}=0.5 & \frac{1}{25}=0.04 & \frac{1}{7}=0.142857 \ldots & \frac{489}{1000}=0.489 \\
\frac{38}{40}=0.95 & \frac{47}{64}=0.73437 & \frac{3}{5}=0.6 & \frac{1}{99}=0.010101 \ldots .
\end{array}
$$

What do you notice?
Fractions with denominators that are multiples of $2 s$ and 5 s convert to terminating decimals.

## Decimals

## Decimal Misconceptions

## Longer is larger

- whole number thinking
- column over flow thinkers take the name from the left most column so 0.35 is 35 tenths
- reverse thinkers believe the value of the column increases as we move to the right. 0.35 is larger than 0.41 because 53 is larger than 14.
Shorter is larger
- any number of tenths is more than any number of hundredths. So 0.4 is larger than 0.83
- reciprocal thinkers think that 0.3728 is like $1 / 3728$. They would choose 0.3 as larger than 0.4 because $1 / 3$ is larger than $1 / 4$
Money thinking
Zero does not matter
All decimals below zero (and past the negative numbers on the number line)


## Decimals

## Decimal Misconceptions

Our data is from over 3000 students aged from 10 to adult.


- Longer-is-larger aShorter-is-larger aOther a Task Expert


## Decimals

## Prevalence of Misconceptions

Longer is larger: a longer decimal is larger than a shorter decimal
In Year 5-40\% of students

By Year 10-5\% of students

## Misconceptions about Decimals

## Longer is Larger

Whole number thinking
Students treat the portion of the number to the right of the decimal point as a whole number.

Therefore,
$3.456>3.5$ because $456>5$

## Misconceptions about Decimals

## Longer is Larger

Column overflow thinking

Students interpret 0.12 as 12 tenths and 0.012 as 12 hundredths. They squeeze the number 12 into one column.

Therefore:
3.45 is three and forty-five tenths, and 3.5 is three and five tenths, so $3.45>3.5$

## Misconceptions about Decimals

## Longer is Larger

Reverse thinking

Students assume that the column names on both sides of the decimal point are the same e.g.
..hundreds, tens, ones, . , tens, hundreds, thousands..

Therefore: $0.46>0.52$ because $64>25$

## Decimals

## Prevalence of Misconceptions

Shorter is larger: a shorter decimal is larger than a longer decimal
$10 \%$ of all students from Year 5-Year 10

## Misconceptions about Decimals

## Shorter is Larger

Denominator focussed thinking
Students think that any number of tenths is greater than any number of hundredths, any number of hundredths is greater than any number of thousandths, and so on...

Therefore:
$0.3>0.84$ because tenths > hundredths

## Misconceptions about Decimals

## Shorter is Larger

Reciprocal thinking

Students view the decimal number to the right of the decimal point as something like the fraction formed by taking the reciprocal, e.g. 0.4 is viewed as $1 / 4$.

Therefore:
$0.12>0.3456$ because $1 / 12>1 / 3456$

## Misconceptions about Decimals

## Shorter is Larger

Negative thinking
Students display confusion between negatives and decimals, e.g. all decimals are below zero, or 0.0_ decimals are below zero.

Therefore:
If $-12>-18$, then $0.12>0.18$

## Misconceptions about Decimals

## Neither Longer or Shorter

## Money thinking

Students relate all decimals to money e.g. 4.236 is shortened to 4.23 as in $\$ 4.23$. Students appear to work well with decimals to hundredths but are not sure of the order of other numbers on the number line.

Therefore: $5.6786=5.67$

## Diagnosing Misconceptions

## Quick Test

NAME:

| For each pair of decimal <br> numbers, circle the one <br> which is LARGER. <br> 4.8 |  |
| :---: | :---: |
| 0.5 | 0.63 |
| 0.75 | 0.86 |
| 0.37 | 0.216 |
| 3.92 | 3.4813 |
| 5.62 | 5.736 |
| 0.6 | 0.85 |
| 0.426 | 0.3 |
| 2.516 | 2.8325 |
| 7.942 | 7.63 |
| 4.08 | 4.7 |
| 1.85 | 1.84 |
| 17.353 | 17.35 |

© 'Teaching and Learning about Decimal Numbers' project, the University of Melbourne.

## Diagnosing Misconceptions

## Quick Test Analysis

| Longer-is-larger misconceptions <br> Typical pattern. The response to item 11 may <br> indicate whether the student is using <br> (X) Whole number thinking or <br> ( $\sqrt{ }$ ) RH column overflow thinking |  |  | Shorter-is-larger misconceptions <br> Typical pattern. The response to item 12 may indicate whether the student is using <br> (X) Reciprocal thinking or <br> ( $)$ Denominator focussed thinking |  |  | Apparent-expert behaviour <br> Typical pattern. The response to item 13 may <br> indicate whether the student is using <br> (X) Money thinking or <br> (v) Taskexpert thinking <br> Note that some money thinkers may guess and then look like a Taskexpert. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14.8 | 4.63 | X | 14.8 | 4.63 | $\sqrt{ }$ | 14.8 | 4.63 | $\sqrt{ }$ |
| 20.5 | 0.36 | X | 20.5 | 0.36 | $\sqrt{ }$ | 20.5 | 0.36 | $\sqrt{ }$ |
| $30.75$ | 0.8 | X | 30.75 | 0.8 | $\sqrt{ }$ | $3 \quad 0.75$ | 0.8 | $\checkmark$ |
| $4 \quad 0.37$ | 0.216 | X | 40.37 | 0.216 | $\sqrt{ }$ | 40.37 | 0.216 | $\sqrt{ }$ |
| 53.92 | 3.4813 | X | 53.92 | 3.4813 | $\sqrt{ }$ | 53.92 | 3.4813 | $\sqrt{ }$ |
| $6 \quad 5.62$ | 5.736 | $\sqrt{ }$ | 65.62 | 5.736 | X | $6 \quad 5.62$ | 5.736 | $\sqrt{ }$ |
| 70.6 | 0.85 | $\sqrt{ }$ | 70.6 | 0.85 | X | 70.6 | 0.85 | $\sqrt{ }$ |
| $80.426$ | 0.3 | $\sqrt{ }$ | 80.426 | 0.3 | X | 80.426 | 0.3 | $\sqrt{ }$ |
| $9 \quad 2.516$ | 2.8325 | $\sqrt{ }$ | 92.516 | 2.8325 | X | 92.516 | 2.8325 | $\sqrt{ }$ |
| $10 \quad 7.942$ | 7.63 | $\sqrt{ }$ | $10 \quad 7.942$ | $7.63$ | X | 107.942 | 7.63 | $\sqrt{ }$ |
| 114.08 | 4.7 | ? | 114.08 | 4.7 | $\sqrt{ }$ | 114.08 | 4.7 | $\sqrt{ }$ |
| $12 \quad 1.85$ | $1.84$ | $\sqrt{ }$ | $12 \quad 1.85$ | 1.84 | ? | $121.85$ | 1.84 | $\sqrt{ }$ |
| $1317.353$ | 17.35 | $\sqrt{ }$ | $13 \quad 17.353$ | (17.35 | X | $13 \quad 17.353$ | 17.35 | ? |

[^0]
# Diagnosing Misconceptions 

## Smart Tests

## smartvic.com

## Teaching Strategies

## Left to Right Comparison

- Compare columns from left to right until one digit in a column is larger than any other in the same column e.g.
compare 45.789 with 45.77
Tens Ones Tenths Hundredths Thousandths

| 4 | 5 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- |
| 4 | 5 | 7 | 7 |  |

same same same top is larger - stop
Therefore, 45.789 > 45.77

## Teaching Strategies

## Linear Arithmetic Blocks (LAB)

Use for representing decimals instead of MAB which children identify with whole number concepts

- uses length (not volume) to represent the size of a number
- relates to the number line
- shows equivalence
-shows density
$\bullet$ active engagement



## Classroom <br> Hidden Number

Used for building skills for comparing the relative size of decimal numbers.
Write two numbers 'hidden' behind doors.

## Classroom

## The Number Line

Decimals on the number line


We want students to get the sense of being able to zoom in or out of the number line.

## Classroom

## The Number Line

## Watch for confusion...

- Defining decimals on number line
- A decimal number is both
-A point on the number line AND
-The distance from 0, a length


## Classroom

## The Number Line

## Number Trails

A game for developing number patterns and sequences.

Suitable for all students.

Begin with whole numbers and addition or subtraction then introduce multiplication and division and decimals and fractions.

## Teaching Strategies Number Trails

Goal is to make the longest number trail you can

- On a board write: Start number:

Doing number:
Operation:

- Allow students two minutes to write as many numbers in the sequence as possible
- The student with the most responses reads their list
- Give this student a 30 second handicap in the next game


## Teaching Strategies

## Jigsaw Arrays



This is a section from a $10 \times 10$ grid.
Fill in the missing numbers.

## Classroom

## Today's Number



Tools session idea:
Today's number is... from
MCTP

## Always, Sometimes, Never

## https://www.ncetm.org.uk/resources/

- An excellent activity to express and discuss understandings about a concept.
- Work in pairs, small groups or a whole group to sort cards into the following categories:
- Always True
- Sometimes True
- Never True
- Some statements are designed to be quite easy while others are deliberately written to be provocative and to promote discussion.


## Always, Sometimes, Never

https://www.ncetm.org.uk/resources/

Zero doesn't matter.

Discuss

## Always, Sometimes, Never

https://www.ncetm.org.uk/resources/

There are a finite number of decimals.

Discuss

## Always, Sometimes, Never

https://www.ncetm.org.uk/resources/

All decimals can be written as a fraction.
All fractions can be written as decimals.

Discuss

## Always, Sometimes, Never

## https://www.ncetm.org.uk/resources/

What is necessary for answering these types of questions?

What is sufficient, ie what is the minimum argument that justifies a point of view?

## Always, Sometimes, Never

## https://www.ncetm.org.uk/resources/

- The longer the decimal, the larger it is.
- The shorter the decimal, the larger it is.
- Zero doesn't matter.
- To multiply a decimal by ten, you just add a zero.
$\bullet 0.9$ is equal to 1
- There are a finite number of decimals.
- When you add two decimal numbers, you get another decimal number.
- We read the names of digits to the right of the decimal point individually.


## Always, Sometimes, Never

## https://www.ncetm.org.uk/resources/

-There is no decimal between 4.397 and 4.398

- All decimals can be written as a fraction.
- All fractions can be written as decimals.
- The decimal point separates the units column from the tenths column.
- The smallest possible decimal is 0.0001
- A number with 3 decimal places is larger than a number with 2 decimal places.
- Decimal numbers can be found between 0 and 1


## Always, Sometimes, Never

https://www.ncetm.org.uk/resources/

## Challenge

In groups of 4 or 5 come up with a new

Always, Sometimes, Never

statement to use in the classroom

Include the Year Level(s) you think it is appropriate for.

## Teacher Understandings

## Addition of Decimals

The algorithms for addition and subtraction of decimals are similar to those for whole numbers.

We can always relate the addition of decimal numbers to addition of fractions. However this is inefficient and the decimal notation gives us an easier way to calculate such sums.

The decimal points in each number should be lined up one under the other. The vertical addition algorithm is shorthand for adding hundreds to hundreds, tens to tens, ones to ones, tenths to tenths, and so on. It is important to line up the place value columns when lining up the decimal point.

## Number and Place Value

## Addition of Decimals

## Example: 4.2 + 5.09

$4.2+$ Line up the decimal points vertically 5.09
$4.20+$ Make both decimals the same "length" 5.09
4.20 + Add columns starting from the right $\frac{5.09}{9.29}$

## Teacher Understandings

## Subtraction of Decimals

When subtracting one decimal from another, write the numbers one under the other as with whole number subtraction, making sure the decimal points are aligned.

There are two standard subtraction algorithms. The following slides show how they work when subtracting 16.532 from 23.84

## Teacher Understandings

## Subtraction of Decimals

Method 1:
23.84 -
16.532
23.840 -
16.532
$23.84^{10} 0-$
$16.53_{1} 2$


Make both decimals the same "length"

Starting from the right, borrow and payback "10s" between the top and bottom lines

Subtract column by column, again starting on the right

## Teacher Understandings

## Subtraction of Decimals

Method 2:

$$
\begin{aligned}
& 23.84 \text { - Line up the decimal points vertically } \\
& 16.532 \\
& 23.840 \text { - } \\
& 16.532 \\
& { }^{1} 2^{1} 3.8^{3} y^{1} 0-\quad \text { Starting from the right, use trading on } \\
& 16.532 \\
& \text { 7. } 308 \\
& \text { Subtract column by column, again } \\
& \text { starting on the right }
\end{aligned}
$$

## Number and Place Value

## Reflection: What have we learned today?

What is Number?

How are whole numbers, fractions and decimals connected?

What do we understand by the term Place Value?

What order and sequence best facilitates understanding of place value?

## The Team

Schools Manager Janine McIntosh janine@amsi.org.au Outreach Manager
Michael O'Connor moconnor@amsi.org.au

ACT
NSW
NT
QLD
SA
TAS
VIC
WA


[^0]:    (c) 'Teaching and Learning about Decimal Numbers' project, the University of Melbourne.

