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Wing Design

These notes accompany the video on Wing Design.

Click on this link to watch the video: Wing Design Video

Introduction

It was only a little over 100 years ago that the human dream of flying like a bird became

a reality. In order to realise that dream it was necessary to understand how to produce

forces that would overcome gravity and air resistance, known as drag. This required

equations for force, area and pressure. Once these were determined, a way needed to be

found to construct vehicles that were sufficiently strong to withstand the forces without

breaking under the stress. This was achieved not just by finding formulas but also by

using calculus.

The Four Forces

There are four forces, acting in pairs, that make flight possible. The first two are thrust

and drag. The second pair are lift and gravity or weight.

Figure 1: The Four Forces

In order to move around it is

necessary to provide a push or

pull against the ground, water

or air. This push, or thrust,

is resisted by the air or water

in front of the moving object.

When it comes to flight, the

name given to this resistance is

drag. When moving at a constant

speed, thrust and drag are equal in size but opposite in direction. To speed up, or

accelerate, thrust must be greater than drag; to slow down, drag must be greater than

the thrust.

Gravity is what causes anything without support to fall to the ground. In order to counter

https://www.youtube.com/watch?v=XdEosdhTw2U
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the effect of gravity there must be some other force acting upward on the object. For

balloons, this force is produced by making the density of the balloon less than that of the

air surrounding it. The air essentially pushes the balloon higher into the air. This is called

buoyancy and is also what allows ships made of steel to float on water.

For birds and planes it is not possible to change their density to be less than that of air so

a different force, called lift, is used instead.

Lift

Lift is produced by the properties of the cross-sectional shape of the wings of birds and

planes. This shape is known as the aerofoil, or airfoil in the US and Canada. As the wing

moves forward through the air it splits the airstream into two parts, one going over the

wing and the other going under the wing. The two different but complementary physical

properties then combine to produce lift. First, two air streams flow at different velocities,

creating a pressure differential between the upper and lower surfaces of the wing due to

an effect explained by Bernoulli’s Principle. Secondly, the aerofoil acts at an angle to

deflect the flow of air downward. Newton’s laws of motion then describe the generation

of a reaction force pushing the wing, and thus the plane, upward.

For level flight, lift and weight balance each other out, having the same magnitude, or

size, but acting in opposite directions. Weight, in mathematics and physics, is the force

on an object produced by gravitational acceleration.

W = m.g

Exercise 1

A Boeing 787-9 Dreamliner (henceforth referred to as “a 787”) has a maximum take-off

mass of 251 metric tonnes. Determine the lift necessary to enable a 787 to take off.

The Lift Equation

Knowing the value of lift needed for flight is one thing. Constructing a craft that will

actually fly is quite another. The formula for lift is:

Lift = Lift Coefficient× density× (velocity)2 ×wing area

2

or

L =CL
ρv2 A

2
.
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Below is a glossary of the terms involved in the equation.

Density, ρ, is air density at a given temperature and altitude.

Velocity, v , is the airspeed of the plane. In this equation it is only the magnitude of the

velocity that is considered. The direction is understood to be forward. Airspeed is a result

of thrust and winds through which the plane travels. A head wind (that is, wind that the

plane is heading into) will add to the speed generated by the plane’s engines. Tail winds,

on the other hand, will subtract from what is generated by the engines.

Wing area, A, is the sum of the plan view areas (also known as cross-sectional areas) of

both wings and some component resulting from the area of the fuselage or body of the

plane.

Velocity and wing area can be easily calculated. Air density needs to be measured and

tables of typical values have been constructed since before powered flight first began

with the Wright brothers.

The Lift Coefficient, CL , on the other hand, is a complicated variable that takes into

account the variety of factors including aircraft design, the properties of air as a fluid,

the angle of the wing to the airstream and so on. As a result, lift coefficients are usually

determined experimentally for each aircraft design and for different air densities which

decrease as altitude increases. Lift coefficients typically fall between 0.1 and 2.
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Wing Area

Even though the secret to flight is the shape of the aerofoil, lift is calculated by treating

the wing as a two dimensional shape. A plan view of one 787 wing is shown below, along

with coordinate values of each of the vertices. All measurements are in metres.

Exercise 2

a Calculate the area of one 787 wing.

b The fuselage, as well as the wings, provides some lift. Using the value of 25.98 m2 for

the component of area provided by the fuselage, calculate the value of the total wing

area of a 787.

Figure 2: Wing dimensions for Boeing 787 Dreamliner

Velocity

For the purpose of this exercise, let take-off velocity for the 787 be 300 km h−1 and its

cruising velocity be 913 km h−1.
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Altitude (m) Air Density, ρ, (kg m−3)

0 1.2250

1000 1.1120

2000 1.0070

3000 0.9093

4000 0.8194

5000 0.7364

6000 0.6601

7000 0.5900

8000 0.5258

9000 0.4671

10000 0.4135

Table 1: Density table adapted from

http://www.engineeringtoolbox.com/standard-atmosphere-d_604.html

Exercise 3

a Use the table of density values with your answers to Exercises 1 and 2 to determine

the value of the lift coefficient for a 787 at cruising velocity at 10 000 m.

b Similarly, calculate the lift coefficient for a 787 at take-off.

c What assumption did you make, and will this always be true?

There are online lift coefficient calculators that you can use to check your answer if you

wish. One of these is given in the References at the end of this module.

Exercise 4

The introductory video mentions that the 787 Dreamliner’s Moveable Trailing Edge

(MTE) changes wing area to provide more lift at lower speeds. Explain why this is so

with reference to the lift equation. For purposes of simplification, you may take it that

the MTE adds an extra metre to the two major sections of the trailing edge of each wing

when fully extended. Also for the purposes of simplification, you may use the value for

the lift coefficient CL calculated in Exercise 3.

http://www.engineeringtoolbox.com/standard-atmosphere-d_604.html
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Drag

The equation for drag is very similar to the one for lift.

Drag = Drag Coefficient× density× (velocity)2 ×wing reference area

2

or

D =CD
ρv2 A

2

At a first glance, all of the terms appear to be the same, with the exception of the

subscript of the coefficient. Looking more deeply, however, the area used is called the

wing reference area, whereas for lift it was the cross-sectional wing area. This is a

significant difference. The causes for drag are more varied than those for lift and, as a

result, the determination of the area to use is more complicated.

The simplest depiction of drag is the friction between the air and the skin of an aircraft.

In such a case, then, the area to use would just be the total surface area of the plane. This

is called skin friction drag. As the Wright brothers discovered, however, craft with the

same area can have significantly different amounts of drag depending on how they are

shaped. Wing span and chord length (see page 12) play a particularly important role in

this. Drag produced by the shape of the plane is known as form drag.

A third component to drag occurs as a result of lift acting on the wings, especially at the

tips and edges. As the two air currents separate and recombine the resultant swirling

induces drag on the wing. Sensibly enough, this is called induced drag.

The fourth and final major cause of drag is called wave drag and is produced by shock

waves for craft as they reach and then go beyond the speed of sound. All four of these

sources need to be considered when designing aircraft.

In practice, when choosing a reference area, designers may take the surface area, the

frontal aspect area (which is the area of the plane moving at right angles to the airflow),

or the cross-sectional wing area if they want to compare drag directly with lift. When it

comes to determining the drag coefficient they then use a wind tunnel to simulate all the

possible conditions that a plane may encounter.

A current area of research for Boeing and other aeronautical companies is how different

textures on the skin of a plane affects drag. Several aircraft manufacturers have been

exploring the use of textured paint and materials to reduce skin friction drag.
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Exercise 5

The 787 has a cruising speed of 913 km h−1 (equivalent to 253 ms−1), at around 10 000m.

Most passenger aircraft cruise at a thrust output of 85% of maximum. For a 787, the

maximum thrust is 320 kN.

a Use this information to determine the drag coefficient for a 787 at cruising speed.

Remember that standard atmospheric densities were provided in the table on page 8.

b Explain why this value for the drag coefficient can only be considered a theoretical

estimate.

Acceleration and Climbing

When a plane is travelling horizontally at a constant velocity, all the forces balance out in

pairs:

Thrust =−Drag

Lift =−Weight.

When the plane accelerates horizontally, thrust is greater than drag and excess thrust,

Fex , is

Fex = ma = Thrust−|Drag|

In a climb, weight continues to act vertically downward but thrust and lift are rectified

into vertical and horizontal components.

(a) Plane in horizontal flight (b) Plane in a climb
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Exercise 6

The Excess Thrust equation can also be written as:

Fex = ma = Thrust+Drag

a Identify the differences in the two equations and explain why they are equivalent.

b Write equations for the vertical and horizontal components of ma in a climb.

Aerofoils

As mentioned above, the secret to flight is the cross sectional shape of the wing called the

aerofoil. This is typically rounded and thick at the front, or leading, edge, and tapered to a

point at the back, or trailing, edge. Yet, an examination of birds and bats shows that their

wings are not all identical in shape or size. These variations allow for different qualities

such as speed, manoeuvrability and hovering.

For the first decade or so of human powered flight from 1903, the development of

aerofoil shapes was largely a matter of past experience and experimentation. This

began to change in the years leading up to the First World War and after. In the United

States, for example, the National Advisory Committee for Aeronautics (NACA) was

founded in 1915 with the express purpose of developing a more systematic approach to

aerofoil design. Over the years from 1915 to 1958 NACA developed several series of

aerofoils that bear their names. Of these, the NACA 4-digit was the first, and the

mathematics behind it is very accessible to secondary level students.

Historical note: in 1958 the NACA was disbanded and its assets and facilities transferred

to the newly established National Aeronautics and Space Administration, NASA.

The NACA 4-Digit Series

There are three distinct phases in the development of the NACA 4-digit aerofoils:

1 The establishment of the mean camber line;

2 Calculation of the aerofoil thickness distribution;

3 Computation of the final coordinates of the aerofoil surfaces.

While computers now make these calculations routine and almost trivial, it is worth

noting that for the entire lifetime of the NACA they were conducted by hand. Even in the
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1960s with space flight and trips to the Moon, the computing power at NASA was less

than what can now be found in a typical mobile phone.

Describing a NACA 4-digit aerofoil

The 4 digits in a NACA 4-digit aerofoil relate to three parameters used to describe the

shape of the aerofoil: m, p and t . To describe these parameters, we first have to

understand the concepts of camber and chord.

Camber is a term used in many areas of study to describe the amount of curvature or

angular positioning between elements in a design. In wing design it means the

asymmetry between the top and bottom surfaces of an aerofoil. In the top example

shown in Figure 4, the NACA 0016 is symmetrical so there is no camber. By comparison,

the bottom example – the NACA 6412 aerofoil – is distinctly asymmetric so there is a lot

of camber.

Figure 4: Comparison of NACA Aerofoils 0016 and 6412

The chord of an aerofoil is the straight line joining the leading and trailing edges of the

aerofoil. These are indicated in blue in Figure 4. The chord length is the length of this

line. To make computations easier, the chord length is usually standardised to be equal

to 1.

The mean camber line is the curve consisting of all the points halfway between the top

and bottom surfaces of the aerofoil. These are indicated in red in Figure 4. If there is no

camber, the chord and mean camber line coincide. The further away the red line is from

the blue, the greater the camber.

To describe the exact shape of an aerofoil, we need to know the maximum camber of the

wing, how far along the chord the maximum occurs, and the maximum thickness of the
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wing. These three parameters are labelled m, p and t and are described as follows:

� m, the maximum camber, is the maximum distance between the chord and mean

camber line, as a percentage of chord length. It is the percentage asymmetry between

the upper and lower surfaces. The higher the value of m, the more asymmetric the

wing is.

� p, the position of the maximum camber, is a value between 0 and 1 and indicates the

distance along the chord from the leading edge of the aerofoil where the maximum

camber occurs.

� t , the maximum thickness of the aerofoil, is the maximum distance between the

upper and lower surfaces, measured as a percentage of the chord length.

The naming convention for the NACA 4-digit series comes from the values of m, p and t .

For example:

� The NACA 9315 aerofoil has a maximum camber, m, of 9% which is located at a point

p which is 0.3 chord lengths from the leading edge, and it has a maximum thickness t

which is 15% of the chord length.

� The NACA 6412, as shown again in Figure 5 with parameters m and p indicated, has a

maximum camber of 6% located 0.4 chord lengths from the leading edge, and with a

maximum thickness which is 12% of the chord length.

Figure 5: NACA Aerofoil 6412 showing parameters m and p

Exercise 7

Describe the parameters of the following aerofoils:

a Cessna models using NACA 2412

b Boeing 500F helicopter using NACA 0012.

The shape of a NACA 4-digit aerofoil can be precisely described using the parameters m,

p and t . The next three sections will go into this in more detail.
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The Mean Camber Line

For each value of x along the length of the chord, the y-coordinate of the mean camber

line yc is calculated by the equation:

yc (x) =


m

p2

(
2px −x2) , for 0 ≤ x ≤ p

m

(1−p)2

[
(1−2p)+2px −x2] , for p < x ≤ 1.

Exercise 8

a Show that the two sections of the mean camber line always form a smooth join when

x = p.

b The two components of the function are both based on (2px − x2). Explain how the

additional terms, m
p2 , m

(1−p)2 and (1−2p) act to transform the same parent function

into each section.

Aerofoil Thickness

For each value of x along the length of the chord, the thickness of the aerofoil both above

and below the mean camber line is calculated by the equation:

yt (x) = t

0.2

(
0.2969

p
x −0.1260x −0.3516x2 +0.2843x3 −0.1015x4) (1)

That is, yt (x) is the half-thickness of the aerofoil at a distance of x from the leading edge.

Aerofoil Surface Coordinates

The hybrid function for camber, yc , and the function for aerofoil thickness, yt , are now

used in combination to determine a set of locus points along the surface of the aerofoil.

The upper surface has coordinates (xU , yU ) while the lower surface has coordinates

(xL , yL). These are given by:

Upper Surface Lower Surface

xU = x − yt sinθ xL = x + yt sinθ

yU = yc + yt cosθ yL = yc − yt cosθ

Notice that the x and y coordinates for both the upper and lower surfaces are calculated

using functions dependent on yc and yt .
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The angle, θ, is the angle of inclination at each point along the mean camber line and is

found using

θ = arctan
d yc

d x
. (2)

For the NACA 6412 aerofoil, when x = 0.2091, then the angle of incidence is θ = 8.1467◦

and the coordinates of the mean camber lines and upper and lower surfaces are shown

below in Figure 6.

You can explore the way in which the NACA 4-digit series aerofoils change shape

according to the parameters m, p and t by opening the online geogebra file. Clicking on

Figure 6 will launch an interactive version in your browser.

Figure 6: NACA 6412 aerofoil angles of incidence

It is worth noting again that all of the calculations required for NACA series aerofoils were

performed manually to a precision of four decimal places.

Exercise 9

a Use the parameters for a Cessna light plane from Exercise 7 to find the angle of the

mean camber line for a value of x = 0.1.

b Use this angle to determine the coordinates for the upper and lower surfaces again

for x = 0.1.

https://ggbm.at/HVY8jHGX
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Stress

Figure 7: Forces on a gymnast are

similar to those on the wings of a plane

Imagine a gymnast performing the rings. At

one stage in the routine they hold their body

horizontal to the ground with their arms out

to the side, as in Figure 7. The gymnast’s arms

and shoulders are supporting their entire

weight. This is exactly the same for planes

except that instead of holding onto rings

it is just a difference in pressure that keeps the

plane in the air.

The wings of a plane are some of the most technically complex products of engineering

ever developed. As well as having a shape that is accurate to within a quarter of a

millimetre, each wing must be able to withstand the forces placed on them from every

direction.

A diagram of the internal structure of a wing (see Figure 8) shows that it is the ribs that

provide the wing with its aerofoil shape. The ribs themselves are connected together by

spars. It is the spars that give strength to the wings and which have to tolerate the major

stresses involved in flight.

Figure 8: The internal structure of a wing

.

Distributed load

In this section, and those following, the variable x refers to the distance along the wing,

measured from the point where the wing joins the body of the plane (fuselage).

Wing spars can be modelled as simple beams. The force on each wing is half the weight
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of the aircraft plus fuel, cargo, passengers and crew. For a 787 Dreamliner this (force on

each wing) can be as much as 125 tonnes. The lift force is distributed along the length of

each of the wings and can be calculated simply by:

ω(x) =− Force

wing length
(3)

ω is known as the distributed lift load of a wing. Although it is written as a function of x,

it is constant along the length of the wing.

Exercise 10

a Calculate the distributed lift load for a 787 Dreamliner given a total mass of 220

tonnes and a wing length of 30 m. For the purpose of simplification take g , the

acceleration due to gravity, to be 10 ms−1.

b Explain why your answer is a negative value.

Shear Force

The shear force on a wing is the force acting in the beam perpendicular to the x-axis.

As the name suggests, if the shear force is strong enough then it will cause the material

of the wing to shear or rip apart. Lift is forcing the wings up while gravity is pulling the

fuselage down. This creates tension, or stretching forces, in the underside of the wing

and compression in the top of the wing. This can be modelled by placing a ruler on two

blocks at either end and then pushing down on its middle.

Shear force, V , can be calculated by integrating the equation for distributed load, ω.

That is,

V (x) =−
∫
ω(x)d x.

Performing the integration above, and remembering that ω(x) is constant, gives:

V (x) =−ωx +C .

In the video, the shear force for the Dreamliner is given as V (x) = 36667x −1100000.

To arrive at a C value of 1 100 000 it is necessary to realise that V (x) is at its minimum

value (that is, zero) when x = 30 (i.e. at the wing tip). So, the value of C is found by:

C =V (x)+ωx

= 0+ (−36667)×30

=−1100000.
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Exercise 11

The ability of the beam to resist shear force is important. Explain why. Use a diagram.

Bending Moment

Figure 9: Shear force on the wing of a

787 Dreamliner

Materials experiencing shear forces, where

one end of the object is fixed, want to try

and bend in response to the force. This is

analogous to the torque on a nut produced by

a spanner. The difference is that we do not

want anything to turn. This bending moment

is highest at the fixed point junction between

the wing and the fuselage.

Bending moment is the integral of shear force:

M(x) =
∫

V (x)d x

Exercise 12

Use calculus to verify the bending moment equation for the 787 given in the video (at

3:37 minutes). Remember to consider an appropriate boundary condition.

Double Integrals

The video next proceeds to discuss the second moment of area and introduces the

concept and nomenclature for double integrals. While this is beyond the scope of any

Year 12 mathematics course in Australia, it is an interesting extension that takes only a

short amount of time. We will begin this section by first discussing displacement,

velocity and acceleration and then proceed to use the derivation of bending moment

from distributed lift load as an example of the use of double integrals.

Displacement, velocity and acceleration are all vector quantities relating to the motion

of an object. In fact, Newton and Leibniz discovered that velocity is the derivative of

displacement, and acceleration is the derivative of velocity. This also makes acceleration

the second derivative of displacement.

An object experiencing acceleration will have a displacement equation in the form of a

quadratic or higher polynomial. For example:

X (t ) = at 2 +bt + c
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Velocity, V (t ), is then:

V (t ) = d X

d t

= 2at +b.

In turn, acceleration, A(t ) is:

A(t ) = dV

d t

= 2a.

A shorthand way of writing A directly in terms of X is to use the second derivative

notation

A(t ) = d 2X

d t 2 .

Now, since integration is the inverse process to differentiation, it holds that a shorthand

notation for repeated integration also exists. In this case the integrals are nested inside

one another. After each integration the constant is found by using the boundary

conditions.

With acceleration, velocity and displacement, the process goes as follows. We start with

a formula for acceleration,

A(t ) = 9.8

and integrate this to find an expression for velocity:

V (t ) =
∫

Ad t = At +b,

where b is a constant of integration.

If the object starts moving from rest, then V (0) = 0, so b = 0. However, if the object is

already moving before the force is applied then b = u, where u is the initial velocity.

So we can write

V (t ) = At +u = 9.8t +u.

To find the displacement, X , we now integrate the velocity V :

X (t ) =
∫

V (t )d t =
∫

(9.8t +u)d t = 9.8

2
t 2 +ut + c

where c is a constant of integration.
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If displacement is 0 when t = 0, then c = 0, giving us

X (t ) = 9.8

2
t 2 +ut .

This is identical to Newton’s equation of motion for displacement under constant

acceleration. We can also write X in terms of a double integral of the acceleration:

X (t ) =
∫ (∫

Ad t

)
d t .

In this example, both integrations are with respect to t . It is possible, however, for the

integrating variable to be different at each stage, as we will soon see.

Exercise 13

Express the bending moment, M(x), as the double integral of distributed load, ω(x).

Second Moment of Area, I

This is the property of a two dimensional shape that relates to how much it is deflected

when experiencing a load. The cross section being considered for this in a wing is the

vertical face of the spar, which we remember is modelled by a rectangular beam.

Figure 10 shows diagrams of the same beam placed in two different orientations. When

a load is placed on top of the beam, the orientation on the left will bend less than the one

on the right. We will see that this is confirmed by the calculation of the second moment

of area, I , which shows that the left beam has a higher value for I than the right one. A

higher value of I means a stronger beam.

Figure 10: A beam in two different orientations
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Calculating I

The second moment of area measures the distribution of points in a shape around a

particular axis. If the shape has many points that are far away from the given axis, this

will create a higher value for I . We will look at how the calculation works in the case of a

rectangular beam.

Figure 11: Beam with height h and

breadth b

Rectangular beams have dimensions of height,

h, in the y-axis, and breadth, b, in the x-axis.

Calculating I about the x-axis involves the use of

a double integral. The first integration is in the y-

axis and the second is in the x-axis. We assume that

the beam is centred at (0,0) as in Figure 11. This

means that integration along the y-axis happens

over the interval (−h
2 , h

2 ), and integration along the

x-axis happens over the interval (−b
2 , b

2 ).

Thus the second moment of area of a rectangular

beam about the x-axis is calculated as

Ix (= Ixx ) =
∫ b

2

−b
2

(∫ h
2

−h
2

y2d y

)
d x.

Performing the integration produces the result shown in the video:

Ix = bh3

12

Note: the second moment of area is also referred to in the video as the moment of inertia.

While this is acceptable for the purposes of the current discussion, it is worth pointing

out that there are differences between the two quantities when conducting a more in-

depth analysis.

Exercise 14

a Using values of b = 2 and h = 5, and then conversely, b = 5 and h = 2, calculate Ix in

each case and verify that, for these values of h and b, the value of Ix is greater when

h > b than when h < b.

b Is it always true that Ix is larger when h > b than if h < b, no matter what values are

chosen for h and b? Justify your answer with an argument or counterexample.
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Bending Stress

Figure 12: Bending Moment

The final section of the video discusses the

calculation of bending stress at any point

along the x-axis of the wing. This bending

stress equation is:

σx (y) = Mz y

Ix
,

where Mz is the bending moment about the

z-axis, Ix is the second moment of area along the x-axis and y is the perpendicular

distance from the point to the x-axis.

Looking carefully at the diagram for the bending moment in Figure 12, it is shown as a

rotation about the z-axis, which is perpendicular to the face of the beam pointing

outward.

Exercise 15

a Calculate σ when x = 15, y = 0.5, b = 30 and h = 0.5.

b What do the values of x, y , b and h refer to in terms of a 787’s wing?

Conclusion

All of the mathematics explored in this activity is accessible to students studying a

calculus course at Year 12. Indeed, high school algebra and calculus is fundamental to

the history, development and realisation of the dream of human flight. Science and

engineering courses at university build on this foundation so that, in under one

hundred years from the first short flight at Kitty Hawk, air travel is now commonplace

and, moreover, the safest known form of transport. It is only by continuing to produce

qualified engineers who understand the mathematics of all aspects of powered flight

that humanity will continue to reach for the skies.
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Applying this to our two trapezia gives us:

Atrap1 = 11.9+6.93

2
×7.55 = 71.08 m2

and

Atrap2 = 6.93+1.92

2
×17.27 == 76.42 m2.

The area of a triangle with side lengths a, b and c can be calculated from Heron’s

formula

A =
√

s(s −a)(s −b)(s − c).

where s = a+b+c
2 , i.e. half the perimeter of the triangle.

For Triangle 1 we have

s1 = 1.92+0.36+2.09

2
= 2.185 m

so we have

Atriangle1 =
√

s1(s1 −1.92)(s1 −0.36)(s1 −2.09) = p
0.1004 = 0.317 m2.

For Triangle 2 we have

s2 = 2.09+4.36+2.54

2
= 4.495 m

so we have

Atriangle2 =
√

s2(s2 −2.09)(s2 −4.36)(s2 −2.54) = p
2.853 = 1.69 m2.

The total area of the wing is then

Total Area = 71.08+76.42+0.317+1.69

= 149.51 m2.

b The total wing area is double the area of one wing plus the area of the fuselage. This

gives

Wing Area = (2×149.51)+25.98

= 325 m2.

Exercise 3
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a First transpose the lift equation to make CL the subject.

L =CL
ρv2 A

2
⇒ CL = 2L

ρv2 A
.

At cruising velocity we have v = 913 km h−1, A = 325 m2, ρ = 0.4135 and L = W <
2459800 N. Before we can calculate CL we need to convert the velocity into SI units

(i.e. ms−1) :

v = 913000

3600
= 253.61 ms−1.

So,

CL = 2×2459800

0.4135× (253.61)2 ×325

= 0.5692.

At a near empty fuel weight of 180 metric tonnes this changes to W = 1764000 N,

which gives

CL = 2×1764000

0.4135× (253.61)2 ×325

= 0.4082.

Note that this provides a range of figures. If other values for weight are used, they

should be accompanied by justifications.

b At take-off we have v = 300 km h−1, A = 325 m2, ρ = 1.2250, L = W ≈ 2459800 N.

Converting the velocity to ms−1 gives us:

v = 300

3.6
= 83.33 ms−1.

So,

CL = 2×2459800

1.2250× (83.33)2 ×325

= 1.7795.

c This question is designed to promote discussion. Most people will use the 1.2250

value for air density, which is the value at sea level. However, not all airports are at sea

level. Some are actually above 4000 m and so this changes the results significantly.

Exercise 4

When the moveable trailing edge is extended, the area of the wing is increased by the
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area of rectangles of width 1m added to the trailing edge of each of the two trapezia. This

additional area is calculated as:

Added Area = (7.55×1)+ (17.27×1)

= 24.83 m2.

The new total wing area is then

New Total Area = 325+ (2×24.83)

= 374.66 m2.

The area is the only parameter to have changed so we still have v = 83.33ms−1, ρ = 1.2250

and CL = 1.7795. This gives the lift as

L =CL
ρv2 A

2

= 2835594 N.

This is an increase of 375 794 N.

Exercise 5

a We first need to calculate the drag of the 787. If the plane is at cruising speed, we

can assume that thrust and drag are equal in magnitude (and opposite in sign). The

exercise tells us that that the plane has a thrust output of 85% of its maximum value

of 320 kN, giving us

D =−0.85×320000 =−272000 =−272 kN.

We know that

D =CD
ρv2 A

2

so we can find CD by rearranging this equation to make CD the subject:

CD = 2D

ρv2 A
.

To perform this calculation it is necessary to select a reference area. For comparison

with lift, the cross-sectional area of the wing is appropriate, so we will use A = 325m2.

The exercise tells us that our speed is v = 913 km h−1 = 253 ms−1, and Table 1 tells us

that ρ = 0.4135 kg m−3. Thus,

CD = 2× (−272000)

0.4135×2532 ×325

=−0.06324.
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b Firstly, the choice of reference area will change the calculated value of the coefficient.

Also, the properties of the aircraft skin, the viscosity of the air and other atmospheric

properties will all change actual drag. Temperature and humidity, for example, are

significant factors. These will change the amount of thrust needed to keep the plane

at a constant speed.

Exercise 6

a The first equation subtracts the absolute, or scalar, value of the drag force from

thrust. The second equation adds the vector value of drag. Since drag acts

backward to the plane’s direction of motion, this has a negative value.

b The total vertical force on the aeroplane is the vertical component of the excess

thrust, plus the vertical component of the lift, minus the weight:

(ma)v = Fv +Lv −W

= Fex sin(α)+L cos(α)−W.

The total horizontal force on the aeroplane is the horizontal component of the excess

thrust, minus the horizontal component of the lift:

(ma)h = Fh −Lh

= Fex cos(α)−L sin(α).

Exercise 7

a A Cessna wing has a maximum camber, m, of 2% of the chord length, located at

a point p which is 0.4 chord lengths from the leading edge and with a maximum

thickness, t , of 12% of the chord length.

b A Boeing 500F helicopter rotor has a maximum camber, m, of 0% along the entire

chord length (i.e. it is symmetrical) and it has a maximum thickness, t , of 12% of the

chord length.

Exercise 8

a We first need to check that the function is continuous at the point x = p; i.e. that the

equations for the two sections of the mean camber line agree at x = p.

For the front part of the line, we have

yc (p) = m

p2 (2p2 −p2) = mp2

p2 = m.

For the end part of the line, we have

yc (p) = m

(1−p)2 (1−2p +2p2 −p2) = m(1−p)2

(1−p)2 = m.
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Therefore the function is continuous at the point x = p. Next we need to check that

it is smooth, i.e. that the derivative of the two functions agree at the point x = p.

Differentiating the front part of the line we get:

d yc

d x
= m

p2 (2p −2x)

and differentiating the end part of the line we get:

d yc

d x
= m

(1−p)2 (2p −2x).

When x = p, the gradient is zero in both cases, telling us that the join is smooth.

b The factors m
p2 and m

(1−p)2 dilate the parent function away from the y-axis (or along

the x-axis). The term (1−2p) translates the parent function this many units parallel

to the y-axis.

Exercise 9

a A Cessna light plane is a NACA 2412 aerofoil, so m = 0.02 and p = 0.4. We want to

find the angle of the mean camber line at x = 0.1. Since x < p, this is a point in the

front section of the mean camber line, so the derivative is

d yc

d x
= m

p2 (2p −2x).

Substituting for m, p and x gives:

d yc

d x
(0.1) = 0.02

0.42 ((2×0.4)− (2×0.1)) = 0.075.

Now we can calculate the angle of the mean camber line using Equation 2:

θ = arctan

(
d yc

d x

)
= arctan(0.075)

= 4.289◦.

b To calculate the coordinates of the upper and lower surfaces of the wing, we first

need to find the aerofoil thickness yt at the point x = 0.1. Using Equation 1 and

t = 0.12 we get:

yt (0.1) = t

0.2
(0.2969

p
x −0.1260x −0.3516x2 +0.2843x3 −0.1015x4)

= 0.12

0.2
(0.2969

p
0.1−0.1260(0.1)−0.3516(0.1)2 +0.2843(0.1)3 −0.1015(0.1)4)

= 0.05.
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We also need the y-coordinate of the mean camber line:

yc (0.1) = 0.02

0.42 (2×0.4×0.1−0.12)

= 0.00875.

With our knowledge of x, yt , yc and θ we can now calculate the coordinates of the

upper surface:

xU = x − yt sinθ = 0.1−0.05sin(4.289◦) = 0.096

yU = yc + yt cosθ = 0.00875+0.05cos(4.289◦) = 0.0586

and the lower surface:

xL = x + yt sinθ = 0.1+0.05sin(4.289◦) = 0.104

yL = yc − yt cosθ = 0.00875−0.05cos(4.289◦) =−0.0411.

So, at x = 0.1, the upper surface coordinates are (0.096,0.0586) and the lower surface

coordinates are (0.104,−0.0411).

Exercise 10

a Using Equation 3 and calculating the force as ma where m = 110 tonnes (assuming

a wing carries half the mass of the plane) and a = 10 ms−1 gives us:

ω(x) =−110000×10

30

=−36666.67 Nm−1.

b The lift load is a force due to the weight of the plane pulling the wing downwards,

hence the negative sign.

Exercise 11

The higher the tensile strength of the material (i.e. the stronger it is) the higher the force

needed to cause it to rip or tear.

Exercise 12

We know that the shear force for the 787 Dreamliner is V (x) = 36667x − 1100000. This

means we have

M(x) =
∫

V (x)d x

=
∫

(36667x −1100000)d x

= 36667x2

2
−1100000x +C .
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When x = 30, M(x) = 0 since there is no bending moment at the wing tip. Substituting

gives C = 16500000 (with rounding). This corresponds to the values given in the video.

Exercise 13

M(x) =
∫ ∫

ω(x)d x =
∫ ∫

−36667d x.

Exercise 14

a For b = 2 and h = 5 we have

Ix = bh3

12

= 2×53

12

= 125

6
= 20.83 m4.

For b = 5 and h = 2 we have

Ix = bh3

12

= 5×23

12

= 10

3
= 3.33 m4.

So in these cases Ix is greater when h > b than when h < b.

b Yes it is true that Ix is always larger when h > b than when b > h. To prove this, we

must show that when h > b we have bh3 > hb3. Remembering that both h and b are

positive numbers we have

h > b ⇒ bh3 > b2h2 > b3h

by first multiplying both sides by the positive number bh2 and then using again that

h > b.

Exercise 15

a We first calculate the second moment of area:

Ix = bh3

12
= 30×0.53

12

= 0.3125 m4
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From Exercise 12

M(x) = 36667x2

2
−1100000x +16500000 = 36667×152

2
−110000×15+16500000

= 4125037.5 Nm

Now from the bending stress equation,

σx (y) = M y

Ix

= 4125037.5×0.5

0.3125

= 6600060 Nm−2.

b The variable x is the position along the length of the wing from the fuselage – in

this case, the halfway point. The variable y is the distance from the x-axis in the

perpendicular direction. The variable b is the breadth of the beam and the variable

h is the height of the beam.
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