NUMBER SENSE AND ALGEBRA - ADDITION STRATEGIES (AdS)

AdS1 - EMERGENT STRATEGIES

\square I can combine two groups of objects and attempt to find the total

- I can compare two quantities up to 10 and state which group has more

AdS2 - PERCEPTUAL STRATEGIES

\square I can demonstrate one-to-one correspondence, e.g. one number name for each object
\square I can count by ones to find the total of two groups
\square I can build and subtract numbers by using objects or fingers
\square I can make combinations to form numbers up 10, e.g. 7 and 3 makes 10

AdS3 - FIGURATIVE (IMAGINED UNITS)

I I can use visualising to find the total of two concealed collections of items, counting from one to find the total

AdS4 - COUNTING ON (BY ONES)

- I can treat a number word as a completed count when solving problems, e.g. I have 7 apples. I want 10 . How many more do I need?
\square I can use the count-up from strategy to solve addition problems, e.g. to find $6+3$, start at 6 and count $7,8,9$, the solution is 9
\square I can use the count-up to strategy to solve problems involving missing numbers, e.g. to solve $6+$ $?=9$, start at 9 and count $7,8,9$, the solution is 3

AdS5 - COUNTING BACK (BY ONES)

- I can use the count-down from strategy to solve subtraction problems, e.g. $9-3=$?, $9 \ldots 8,7,6$, the solution is 6
\square I can use the count-down to strategy to solve subtraction problems, e.g. 9 take away something equals 6 , start at $9 \ldots 8,7,6$, the solution is 3
- I can find the difference between two numbers less than 20

I I can count back to find the difference between two quantities where the difference is no greater than 4

AdS6 - FLEXIBLE STRATEGIES WITH COMBINATIONS TO 10

\square I can use a range of non-count by one strategies when adding or subtracting numbers, e.g. bridging to 10, doubles or near doubles
I I can partition whole number into parts, e.g. 7 is 5 and 2,6 and 1 or 4 and 3
\square I can use my knowledge of the relationship between addition and subtraction to help me solve problems, e.g. I know that 7 and 3 makes 10 so 10 take away 7 is 3

AdS7 - FLEXIBLE STRATEGIES WITH TWO-DIGIT NUMBERS

- I can use my knowledge of 10 as a unit to add and subtract two-digit numbers, e.g. jump strategy, split strategy or compensation
\square I can manipulate tens and ones to solve addition problems, e.g. $45+37=$?

$$
\begin{aligned}
& 40+30=70 \\
& 5+7=12 \\
& 70+12=82
\end{aligned}
$$

\square I can manipulate tens and ones to solve subtraction problems, e.g. $45-37=$?

$$
45-30=15
$$

$$
15-7=8
$$

\square I can partition numbers in different ways to help me solve addition and subtraction problems, e.g.

$$
\begin{aligned}
& 53-27=? \\
& 40+13-20-7 \\
& =40-20+13-7 \\
& =20+6 \\
& =26
\end{aligned}
$$

AdS8 - FLEXIBLE STRATEGIES WITH THREE-DIGIT NUMBERS AND BEYOND

- I can manipulate hundreds, tens and ones to solve addition problems involving three-digit numbers and beyond, e.g.

$$
457+250=?
$$

$$
457+200=657
$$

$$
657+50=707
$$

- I can manipulate hundreds, tens and ones to solve subtraction problems involving three-digit numbers and beyond, e.g.

$$
3000-260=?
$$

$$
3000-200=2800
$$

$$
2800-60=2740
$$

\square I can solve subtraction problems involving trading or the exchange of units
\square I can use multiple strategies for solving everyday problems involving addition and subtraction

