NUMBER SENSE AND ALGEBRA - INTERPRETING FRACTIONS (InF)

InF1 - CREATING HALVES

\square I can identify the part and the whole
\square I can recognise that dividing a whole into 2 parts can create equal or unequal parts, e.g.

- I can show half by dividing an object into two equal parts, e.g. fold a piece of paper in half or draw a line to show half

- I can show half by dividing a collection into two equal parts, e.g. make 2 groups of 3 when halving a collection of 6 counters

- I can explain the terms halfway and half

InF2 - REPEATED HALVING

- I can use repeated halving to show quarters and eighths, e.g. to find quarters you find half then halve each half

InF3 - REPEATING FRACTIONAL PARTS

\square I can recognise and compare fractional parts of a whole, e.g. I know that two quarters is twice one quarter, not just the second quarter of a whole

\square I can use repetition and matching to compare the equality of parts, e.g. $\frac{1}{4}$ is smaller than $\frac{1}{3}$

$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	

InF4 - APPLYING PROPORTION

- I can calculate thirds by visualising or using approximations, e.g. imagines a paper strip in 3 parts, then adjusts and folds
\square I can identify examples and non-examples of thirds and fifths, e.g.

$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

\square I can recognise that a whole can be used to represent different fractions, e.g. a strip of paper can be folded to show quarters then re-folded to show fifths

$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

\square I can show that the more parts a whole is divided into the smaller the parts will become, e.g.

$\frac{1}{2}$	$\frac{1}{2}$

$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

InF5 - EQUIVALENCE OF FRACTIONS

\square I can identify the need to have equal wholes when comparing fractions
I I can represent a fraction larger than one, e.g. $\frac{4}{3}$ is one full whole and $\frac{1}{3}$ of an additional whole

$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

$\frac{1}{3}$		

- I can show equivalent fractions by dividing the same-sized whole into different parts, e.g. a fraction wall
\square I can use partitioning to show the relationship between fractions, e.g. $\frac{1}{6}$ can be shown as $\frac{1}{3}$ of $\frac{1}{2}$

InF6 - FRACTIONS AS NUMBERS

I can link fractions to division, e.g. $\frac{2}{6}$ is the same as $2 \div 6$ or 2 partitioned in 6 equal parts
\square I can place fractions on a number line and explain my thinking, e.g

- I can represent fractions as decimals and percentages, e.g.

$$
\frac{1}{2}=0.5=50 \%
$$

\square I can show and explain that a fraction represents a single number, not two separate whole numbers

InF7 - USING FRACTIONS

\square I can use my knowledge of equivalence to help me compare fractions, e.g. to find out if two-thirds is greater than three-quarters I can convert both fractions to twelfths
\square I can explain why you need to have the same denominator to add or subtract fractions
\square I can use strategies to find a fraction of a quantity, e.g. to find two thirds of 27 I can find one-third then double it
\square I can demonstrate why dividing by a fraction can result in a larger a number
I I can understand the difference between multiplying and dividing fractions

