

NUMBER SENSE AND ALGEBRA - INTERPRETING FRACTIONS (InF)

InF1 – CREATING HALVES

	I can identify the part and the whole
	I can recognise that dividing a whole into 2 parts can create equal or unequal parts, e.g.
	I can show half by dividing an object into two equal parts, e.g. fold a piece of paper in half or draw a line to show half
	I can show half by dividing a collection into two equal parts, e.g. make 2 groups of 3 when halving a collection of 6 counters
	I can explain the terms halfway and half
InF2	- REPEATED HALVING
	I can use repeated halving to show quarters and eighths, e.g. to find quarters you find half then halve each half
	→

InF3 – REPEATING FRACTIONAL PARTS

I can recognise and compare fractional parts of a whole, e.g. I know that two quarters is twice one quarter, not just the second quarter of a whole

I can use repetition and matching to compare the equality of parts, e.g. $\frac{1}{4}$ is smaller than $\frac{1}{3}$

$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$\frac{1}{3}$		1	$\frac{1}{3}$

П

П

InF4 – APPLYING PROPORTION

- I can calculate thirds by visualising or using approximations, e.g. imagines a paper strip in 3 parts, then adjusts and folds
 - I can identify examples and non-examples of thirds and fifths, e.g.

I can recognise that a whole can be used to represent different fractions, e.g. a strip of paper can be folded to show quarters then re-folded to show fifths

		1 -
$\overline{4}$ $\overline{4}$	$\overline{4}$ $\overline{4}$	$\overline{4}$

1	1	1	1	1
5	5	5	5	5

I can show that the more parts a whole is divided into the smaller the parts will become, e.g.

1	1
2	2

1	1	1	1	1
5	5	5	5	5

InF5 – EQUIVALENCE OF FRACTIONS

- I can identify the need to have equal wholes when comparing fractions
- I can represent a fraction larger than one, e.g. $\frac{4}{3}$ is one full whole and $\frac{1}{3}$ of an additional whole

- I can show equivalent fractions by dividing the same-sized whole into different parts, e.g. a fraction wall
- I can use partitioning to show the relationship between fractions, e.g. $\frac{1}{6}$ can be shown as $\frac{1}{3}$ of $\frac{1}{2}$

InF6 – FRACTIONS AS NUMBERS

- I can link fractions to division, e.g. $\frac{2}{6}$ is the same as $2 \div 6$ or 2 partitioned in 6 equal parts
- I can place fractions on a number line and explain my thinking, e.g.

$$\frac{1}{2} = 0.5 = 50\%$$

I can show and explain that a fraction represents a single number, not two separate whole numbers

InF7 – USING FRACTIONS

- I can use my knowledge of equivalence to help me compare fractions, e.g. to find out if two-thirds is greater than three-quarters I can convert both fractions to twelfths
 - I can explain why you need to have the same denominator to add or subtract fractions
- I can use strategies to find a fraction of a quantity, e.g. to find two thirds of 27 I can find one-third then double it
- I can demonstrate why dividing by a fraction can result in a larger a number
- I can understand the difference between multiplying and dividing fractions