## NUMBER SENSE AND ALGEBRA - MULTIPLICATIVE STRATEGIES (MuS)

## MuS1 - FORMING EQUAL GROUPS

$\square$ I can share collections equally by ones
D I can make equal groups and count by ones to find the total

## MuS2 - PERCEPTUAL MULTIPLES

$\square$ I can share collections equally by groups, e.g. make 3 groups of two - 2, 2, 2

- I can make equal groups and use skip counting (or known facts) to find the total, e.g. to make 3 groups of two you need 6 items or 2, 4, 6


## MuS3 - FIGURATIVE (IMAGINED GROUPS)

- I can use my fingers (or other method) to help me visualise the items in each group before determining the total
I I can use my knowledge of one group to work out how many items in total, e.g. if I can see that one packet has five pens, so 3 packets would be 3 groups of five or 15 pens
$\square$ I can count by twos, fives and tens to help me find the total


## MuS4 - REPEATED ABSTRACT COMPOSITE UNITS

$\square$ I can use repeated addition to help me find the total, e.g. 3 groups of 5 is $5+5+5$ or 15

- I can use repeated subtraction to help me share a collection, e.g. how many threes in 10? 10-3 $=7,7-3=4,4-3=1$, so there are 3 threes in 10 and one remaining
$\square$ I can use skip counting and may use fingers to keep track of the number of groups while counting
$\square$ I can find the total or count the number of equal groups when items cannot be seen


## MuS5 - COORDINATING COMPOSITE UNITS

$\square$ I can mentally calculate the total using the number of groups, e.g. 4 groups of 5 is 20
$\square$ I can mentally calculate the number of groups using the total, e.g. 20 shared between 4 is 5
$\square$ I can represent multiplication problems in various ways, e.g. arrays, repeated addition, factors, etc.
$\square$ I can represent division problems in various ways, e.g. sharing, measurement, grouping division, etc.

## MuS6 - FLEXIBLE STRATEGIES FOR MULTIPLICATION \& DIVISION

- I can use my knowledge of multiples (or skip counting) to help me calculate related multiples, e.g. use multiples of 4 to find multiples of 8
$\square$ I can recall single-digit multiplication facts and apply these to problems, e.g. 7 boxes of 6 donuts is 42 donuts
$\square$ I can use known facts to solve other multiplication problems mentally, e.g. $4 \times 8$ is the same as $2 \times 2 \times 8$ or double, double 8
- I can use known multiples and strategies for division to solve problems mentally, e.g. $64 \div 4$ is half of 64 , then half of 32 or 16
I I can explain the idea of a remainder and find what is 'left over' when solving division problems


## MuS7 - FLEXIBLE NUMBER PROPERTIES

- I can explain that multiplication and division are inverse operations and use this to help solve problems, e.g. I know that $7 \times 3=21$, so $21 \div 3=7$
$\square$ I can use my knowledge of factors to help me solve multiplication and division problems
- I can use my knowledge of the distributive property to help me solve multiplication problems, e.g $7 \times 83=7 \times 80+7 \times 3$
$\square$ I can use my knowledge of place value to help me solve multiplication problems, e.g. $327 \times 14=$ $327 \times 10+327 \times 4$
$\square$ I can use estimation and rounding to help me check the reasonableness of solutions

