NUMBER SENSE AND ALGEBRA - OPERATING WITH PERCENTAGES (OwP)

OwP1 - UNDERSTANDING PERCENTAGES AND RELATIVE SIZE

\square I can interpret per cent as meaning 'out of 100 '
\square I can recognise that 100% is a complete whole
I can recognise percentage as an operator, e.g. percentage is of an amount such as 17% of 80

- I can use percentages to describe and compare size, e.g. select the container that is 75% full or find an object that is 50% larger
- I can represent percentages of amounts

OwP2 - FIND PERCENTAGE AS PART OF A WHOLE

- I can use fraction benchmarks to find percentages of quantities, e.g. to find 30% of 60 I find 10% of 60 which is 6 and multiply it by 3
\square I can find a percentage of a quantity, e.g. $10 \%, 20 \%, 25 \%, 50 \%, 75 \%$, and multiples of these
\square I can use multiplication to find the percentage of any amount, e.g. 13% of 160 is $\frac{13}{100} \times 160=20.8$
- I can find percentages of one quantity and express one quantity as a percentage of another, e.g. find 20% of 13 and determines what percentage $\$ 13$ is of $\$ 20$

OwP3 - FIND A PART OF A WHOLE AS A PERCENTAGE

\square I can use a strategy to find a percentage that represents part of a whole, e.g. what per cent is 7 of 28 ?

OwP4 - FIND THE WHOLE FROM A PERCENTAGE AND A PART

\square I can find the whole given a percentage, e.g. if 20% is 13 ml , what is 100% ?
\square I can find the whole for a range of multiplication problems, e.g. percentages for calculating discounts and rates for best buys

OwP5 - ADDING A PERCENTAGE AS MULTIPLYING

\square I can increase and decrease quantities by a percentage to determine discounts and mark-ups
\square I can use percentages to calculate simple interest on loans and investments

- I can recognise that adding a percentage is equivalent to multiplication, e.g. adding 3% is the same as multiplying by 1.03

OwP6 - REPEATEDLY ADDING A PERCENTAGE

- I can use percentage increases or decreases as an operator, e.g. a 3% increase is achieved by multiplying by 1.03 , and four successive increases is achieved by multiplying by 1.03^{4}
\square I can choose appropriate strategies to solve a range of multiplication problems
\square I can use percentages to calculate compound interest on loans and investments
- I can critically evaluate claims that involve calculating percentages, e.g. why is a 10% increase followed by a 10% discount different from the original price?

