STATISTICS AND PROBABILITY - UNDERSTANDING CHANCE (UnC)

UnC1 - DESCRIBING CHANCE

\square I can describe familiar events that involve chance
\square I can recognise that some events may or may not happen
I I can make predictions on the likelihood of familiar, everyday occurrences

UnC2 - COMPARING CHANCE

\square I can explain why one result is more likely than another, e.g. if there are more blue than red counters in a bag, blue is more likely to be selected
\square I can explain why outcomes of chance experiments may differ from expected results

UnC3 - FAIRNESS

\square I can identify all the possible outcomes from simple experiments

- I can explain that 'fairness' of chance experiments is related to the equal likelihood of all possible outcomes
\square I can identify unfair elements in games that affect the chances of winning, e.g. having an unequal number of turns
\square I can recognise that all probabilities must lie between impossible (no chance) and certain

UnC4 - PROBABILITIES

D I can express probability as the number of ways an event can happen out of the total number of possibilities
I I can describe probabilities as fractions of one, e.g. the probability of an even number when rolling a die is $1 / 2$

UnC5 - UNDERSTANDING CHANCE

\square I can describe the likelihood of events using a fraction or percentage
\square I can interpret the odds of an event, e.g. the odds against rolling a 6 on a die is $5: 1$

- I can explain that the probability of independent events, such as a coin toss, is not affected by previous results
\square I can recognise that the probability of something occurring or not occurring has a total of 1 , e.g. the probability of rolling a 3 is $\frac{1}{6}$ and the probability of not rolling a 3 is $\frac{5}{6} ; \frac{1}{6}+\frac{5}{6}=1$
\square I can find the total of multiple (or compound) events, e.g. tossing two coins
\square I can compare the expected and actual results of a chance event

