MEASUREMENT AND GEOMETRY - UNDERSTANDING UNITS OF MESUREMENT (UuM)

UuM1 - DESCRIBING LENGTH

\square I can identify the attribute of length using gestures
\square I can identify the longest object using direct comparison
\square I can compare the length of two objects by matching the ends
\square I can use everyday language to describe measurement

UuM2 - COMPARING AND ORDERING OBJECTS

\square I can compare objects using comparative language such as longer, shorter, lighter, heavier, the same as, etc.
\square I can order three or more objects by comparing their size
\square I can make a copy of the length of one object (with fingers) and compare this with another object

UuM3 - USING INFORMAL UNITS OF MEASURE

\square I can estimate the total number of units needed to measure an object, e.g. the book is three pop sticks in length

- I can use different informal units to measure length, mass or capacity, such as paper clips, blocks or counters
- I can use a selection of the same size object to measure length, area and volume without gaps or overlaps
- I can count (by ones) the number of units I have used to measure an object to find the total and then make comparisons

UuM4 - USING EQUAL UNITS FOR INDIRECT COMPARISON

- I can describe the relationship between the size and number of units (with bigger units you need fewer of them)
\square I can use a selection of the same size and type of unit to make indirect comparisons of mass and capacity

UuM5 - REPEATING A SINGLE INFORMAL UNIT TO MEASURE

- I can measure the length of a shape using a single informal unit repeatedly, e.g. use one paper clip when measuring the length of a line by marking its place then moving the clip along the line
- I can estimate the length or area by visualising how many units I think will fill the space being measured
\square I can explain that the distance measured is the space between the marks of each unit, not the marks themselves
- I can use appropriate uniform units when measuring mass and capacity

UuM6 - IDENTIFYING THE STRUCTURE OF UNITS

\square I can draw and describe the row and column structure to represent area as an array, e.g.

This is a 2×3 array

- I can calculate the total area using my knowledge of multiplication, e.g. a 2×3 array has a total area of 6
- I can use familiar items as benchmarks when estimating mass and capacity, e.g. the capacity of the cup is less than my drink bottle
\square I can estimate lengths that lie between full units by visualising, e.g. the length of the book is 10 and a half blocks

UuM7 - USING THE STRUCTURE OF UNITS

\square I can explain the difference between different measures of the same shape or object (area and perimeter, volume and mass, volume and capacity)
\square I can use rows, columns and layers to find the number of units needed to measure volume
\square I can create and use the structure of repeated layers to determine the volume of a rectangular prism

- I can use dissection and rearrangement to calculate the area of unfamiliar shapes

UuM7 - USING INFORMAL UNITS

\square I can measure, compare and estimate length, area, mass, volume and capacity using standard formal units
\square I can calculate the perimeter using the properties of two-dimensional shapes to determine unknown lengths

UuM8 - CONVERTING UNITS

\square I can convert between formal units of measurement
\square I can recognise the relationship between metric units of measurement and the base-ten place value system, e.g. there are 100 centimetres in 1 metre
\square I can use a diagram to explain why having 100 cm in a metre results in $10000 \mathrm{~cm}^{2}$ in a square metre

UuM9 - CALCULATING MEASUREMENTS

\square I can use dissection and rearrangement to calculate the volume of objects
\square I can measure objects with a high level of precision, e.g. use decimal values

UuM9 - CIRCLE MEASUREMENTS

- I can understand the relationship between the circumference and the diameter of a circle is constant (π)
- I can use the constant (π) to determine the circumference and area of a circle

