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Abstract

Cell invasion is a biological process characterised by the movement of a cell front(s) into previously
unoccupied territory. It is essential in many different areas, including wound repair and disease develop-
ment. Traditionally, mathematical models of cell-invasion are based on the classical Fisher-Kolmogorov
equation. These generally lead to the models being parabolic in nature. While this is acceptable in some
circumstances, it means the model cannot represent experimental measurements of individual cells as it
implies that information propogates forward with infinite speed. To overcome this limitation, a new style
model of cell-invasion was studied which is built up from a velocity-jump process in which information
propogates with finite speed. This model is 1-D, breaking the cells into two subpopulations; a left-moving
L(x, t) and a right moving R(x, t). This leads to the creation of a coupled system of hyperbolic partial
differential equations. This system was then analysed and solved numerically (and analytically in special
cases) for a wide-variety of parameter choices. In doing this a variety of different behaviours could be
seen, including the transition from smooth monotone travelling wave solutions to smooth non-monotone
travelling wave solutions. The research was concluded by considering the appropriateness of the model,
as well as possible future extensions to it.



Section I

Introduction

Cell invasion is an extremely important biological process. It is characterised by the movement of a
’front’ or ’wall’ of cells into a previously unoccupied area [5, 6]. This behaviour can be readily found in
many biological systems, including in wound healing, tissue repair and disease development. Often these
fronts arise in cell populations that are motile and proliferate up to a carrying capacity. This is because
as these two processes combine, they lead to forward motion of cells which proliferate fast enough to
leave full density behind them.

Most traditional models of cell-invasion are based on the Fisher-Kolmogorov equation [2, 3] in some way.
Due to the nature of this equation, the subsequent models are normally parabolic reaction-diffusion style
equations, which support travelling wave solutions [2]. A more recent version of cell invasion modelling
involves the creation of discrete position-jump models, trying to account for behaviour of individual cells,
and then transform the discrete equations into continuum style models.

Due to many recent advances in microscopy and imaging, experimental measurements of many cell
behaviours (including invasion) are becoming detailed enough to measure individual cell speeds [1, 4].
However, traditional models that are based on the Fisher-Kolmogorov equation cannot be used to make
predictions about the speed of individual cells, as they are parabolic and subsequently imply that infor-
mation propogates forward with infinite speed.

In order to overcome this limitation, we consider a continuum partial differential equation model built
from a discrete random walk process known as a velocity-jump process. This newer style of modelling
incorporates the fact that information propogates forward with finite speed, thus making it more bi-
ologically reasonable. Briefly, the discrete process (in one-dimension) involves breaking the total cell
population into two subpopulations; a left-moving one, and a right moving one. Discretely, each cell can
be thought to occupy one grid space on a lattice, with grid-length δ. During a given discrete time interval
(duration τ) each cell agent can move a distance of vτ with probability Pm, where v is the cell velocity.
This means that right-moving cells attempt to step a distance of +vτ and left-moving cells attempt to
step a distance of −vτ . Equally at any given time interval, an agent can change direction with probability
Pt. In this way a left-moving cell can change to a right-moving cell and vice versa. Setting that Pt = 0
generates motion that is purely ballistic, setting Pt << 1 gives persistent motion, with only small levels
of cell turning, while setting 1−Pt << 1 gives motion that is essentially persistence-free. Finally, at any
time step an agent can proliferate, producing a daughter agent with probability Pp [7, 8].

Traditional velocity-jump models do not account for crowding effects. In effect the model assumes
that multiple agents can reside at the same location in space and time and that agents can move through
each other. This is of course biologically unreasonable, as cells have a finite size and thus cannot occupy
the same location or move through each other. Motivated by this, a velocity-jump model was created
that incorporated crowding effects so that each lattice site had a maximum occupancy of 1. The motility
and proliferation mechanisms were also adapted so that any event that would cause a lattice site to
surpass maximum occupancy was aborted. Beyond this it was shown that the resulting model was quite
different to the usual models that arise from noninteracting velocity-jump processes that do not include
crowding effects. In particular the work showed that the pde description of a proliferative velocity-jump
process with crowding effects gives rise to moving cell fronts that are travelling wave solutions of the
governing equations of the discrete processes [7].

The central aim of this report is to the describe the travelling wave solutions of a new set of partial
differential equations (pde) that can be used to describe cell motion. The travelling wave behaviours
of this system are presented for three different cases: (i) Case 1, no turning (ii) Case 2, fast turning,
and (iii) Case 3, intermediate turning. The system of pdes is solved using a combination of exact and
numerical methods, and a range of travelling wave solutions are seen. These include transitions from
smooth monotone wave behaviour to smooth nonmonotone behaviour. The solutions are also compared
to the corresponding phase plane trajectories. Overall this leads to the conclusion that low turning rates
are the most biologically relevant.
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Section II

The Initial Model

Previous work [7] considered a discrete velocity-jump model of cell invasion with proliferation and crowd-
ing effects. By considering the discrete processes in one dimension, the following pde system is arrived
at:

∂R

∂t′
= −v ∂

∂x′
[R(1− S)] + λ(L−R) + θR(1− S),

∂L

∂t′
= +v

∂

∂x′
[L(1− S)] + λ(R− L) + θL(1− S)

Where L(x′, t′), R(x′, t′) and S(x′, t′) are the left-moving, right-moving and total cell densities at point
x′ and time t′. The parameters are the cell velocity v, the turning force λ and the proliferation rate θ.
All of these are related to the discrete process probabilities Pm, Pt and Pp.

Before analysis, the above system can be simplified by nondimensionalising. New spatial and temporal
coordinates t = t′/θ and x = vx′/θ are introduced, leading to the system:

∂R

∂t′
= − ∂

∂x′
[R(1− S)] + Λ(L−R) +R(1− S),

∂L

∂t′
= +v

∂

∂x′
[L(1− S)] + Λ(R− L) + L(1− S).

Where Λ is λ/θ, the ratio between the turning force and proliferation rate.

To fall in line with experimental observations (e.g. a scrape wound assay), these equations would need
to operate on a finite domain with a heaviside style initial condition representing a section of the domain
being at full density (S(x, 0) = 1), and the rest being empty (S(x, 0) = 0). However, to consider travel-
ling wave solutions an infinite domain −∞ < x <∞ is more appropriate. Equally, instead of a heaviside
style function, we use an initial condition of the form:

L(x, 0) ≡ 0, R(x, 0) =

{
1, x < 0

exp(−ξx) x ≥ 0

Where ξ > 0 is a constant. For appropriate large ξ this represents a fast transition between full density
and no density, as the exponential decays quickly.

To analyse the travelling wave solutions of this pde, the transition needs to be made into a travel-
ling wave coordinate. This is done by transforming the pde system of x and t into an ode of the new
variable z through the substitution z = x− ct, where c is the wavespeed. Making this substitution leads
to the system:

−cdR
dz

= − d

dz
[R(1− S)] + Λ(L−R) +R(1− S),

−cdL
dz

= +
d

dz
[L(1− S)] + Λ(R− L) + L(1− S).

For travelling wave solutions to exist for this system, there has to be a heteroclinic orbit between at
least two of the system’s steady states. These steady states can be found by expanding out the above
equations and then setting dL

dz = dR
dz = 0. Doing this reveals that the system has two steady states:

(L,R) = (0, 0),

(
1

2
,

1

2

)
.

To work out whether a heteroclinic orbit exists between these two steady states, phase plane analysis
can be performed. By linearising around the first steady state, the eigenvalues of the Jacobican can be
found to be: (

1

2
,

1

2

)
: µ1,2 =

1

c
,

2Λ

c
.
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c and Λ are both positive parameters, and thus this steady state is an unstable node. For the second
steady state the eigenvalues are:

(0, 0) : µ3,4 =
c(Λ− 1)±

√
c2λ2 − 2Λ + 1

c2 − 1
.

The nature of µ3,4 are much harder to see. However, through analysis it can be shown that as long as
c > 1, the state is either a stable node, or a saddle point, both of which can draw at least one trajectory
in. This means that a heteroclinic orbit exists such that solutions will travel out from ( 1

2 ,
1
2 ) towards

(0, 0). This would correspond to a wave of cells moving from full split-density (L = 1
2 , R = 1

2 ) towards
the uninvaded territory (L = 0, R = 0).

As x → ∞, the trajectory between the steady states would be expected to approach (0, 0) along the
most negative eigenvalue, such that:

R(z) ∼ exp(µ4z)

This can be matched with the initial condition, to create the dispersion relationship:

c =
1− Λ +

√
Λ2 + ξ2

ξ
.

This equation allows the wave speed to be directly controlled by specifically choosing the initial condition,
which is key for analysing the system.
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Section III

Travelling Wave Analysis

To simplify analysis of the system, results were split into three different cases corresponding to different
Λ values. For each case a series of numerical results were generated, alongside (where possible) analyti-
cal results. Numerically the pdes were solved using an upwind finite different scheme on a uniform grid
(with a grid spacing δx. A forward Euler Method (with constant step size δt) was used for the temporal
integration.

The phase-planes presented were created from the ode system. The numerical trajectories were ob-
tained using a fourth order Runge-Kutta method with a fixed step size δz.

3.1 Case 1: No Turning, Λ = 0

The first case presented is for when there is no turning. This means that λ = 0 and so consequently
Λ = 0. With no turning, and an initial condition of L(x, 0) = 0, we can gather that L(x, t) = 0. This
means that S = R and the ode system becomes:

−cdR
dz

= − d

dz
[R(1−R)] +R(1−R).

This equation has the exact solution:

R(z)

(1−R(z))
c+1
c−1

= Aexp

[
− z

c− 1

]
,

where A is a constant of integration.

The set of pdes can be solved numerically, and overlaid against the analytical solution. The results
of this can be seen in figures 3.1, 3.2 and 3.3. These figures show that the two solutions are very close,
giving strength to the numerical results. The figures were generated with equal time spacings of 20, thus
as c is increased the waves spread further apart. Equally it can be seen that as c increases the waves
become more shallow.

3.2 Case 2: Dominant Turning, Λ→∞
The second case presented is for when Λ→∞. This corresponds to the turning force (λ) overpowering
proliferation (θ) and becoming the most dominant dynamic in the system. If every cell is constantly
trying to turn, it would be expected that over long time L→ R, and thus that S → 2R. This once again
turns the ode system into a singular equation:

−cdR
dz

= R(1− 2R).

As in the previous case, this can be solved to give an analytical form for R(z)

R(z) =
A

2A+ exp
[
z
c

] ,
where A is a constant of integration.

The set of pdes can be solved numerically and overlaid against the analytical solution. It should be
noted that for the numerical results Λ = 10 was used to approximate Λ → ∞, as even this reasonably
small value was seen to be accurate against the analytical solution. The results of the numerical and
analytical overlay can be seen in figures 3.4, 3.5 and 3.6. These figures show that the two solutions are
very close, giving strength to the numerical results. The figures were generated with equal time spacings
of 20, thus as c is increased the waves spread further apart. Equally it can be seen that as c increases the
waves become more shallow. One of the key differences that can be seen between this case and the first
case is that the waves are travelling out from 0.5 instead of 1. This is because there is now a left-moving
population, thus at the waves back end the density should be evenly split and add to unity.
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Figure 3.1: Plot of case 1, Λ = 0, c = 2, with 3
waves plotted at time spacings of 20
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Figure 3.2: Plot of case 1, Λ = 0, c = 5, with 3
waves plotted at time spacings of 20
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Figure 3.3: Plot of case 1, Λ = 0, c = 10, with 3
waves plotted at time spacings of 20
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Figure 3.4: Plot of case 2, Λ → ∞, c = 2, with 3
waves plotted at time spacings of 20
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Figure 3.5: Plot of case 2, Λ → ∞, c = 5, with 3
waves plotted at time spacings of 20
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Figure 3.6: Plot of case 2, Λ→∞, c = 10, with 3
waves plotted at time spacings of 20
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3.3 Case 3: Intermediate Turning

The third and final case presented is that of intermediate turning. In this case, the ode system cannot
be separated or reduced to a singular equation and thus cannot be solved analytically. Therefore to
compare the behaviour the solutions were gathered both through numerically solving the pde system
and through creating a phase-plane of the ode system. This was done for three different ’intermediate’
Λ values.

As can be seen in figures 3.7 and 3.8, low Λ values produce very non-monotone yet still smooth travelling
waves. At the leading edge, the waves formed are extremely right dominant. Beyond this, key compo-
nents of the numerical results can be seen in the behaviour of the phase-plane. The L and R values at
the peak in R correspond accurately to where the right null-cline cuts the wave trajectory. Equally, the
trajectory can be seen to push up into the Right plane initially, before pulling in towards (0, 0). This
matches up with the numerical results showing right dominance at the leading edge.

As Λ increases, the waves start to become more monotone. This can be seen in figures 3.9 and 3.10.
The increase in Λ has flattened the wave trajectory significantly. This in turn has caused it to intersect
the right null-cline at a much lower point, leading to a less pronounced peak in the right wave and less
leading edge dominance.

As Λ increases once more the waves become fully monotone, although not fully overlaid. This can
be seen in figures 3.11 and 3.12. This time in the phase-plane the trajectory has flattened much more,
and subsequently does not appear to cut the right null-cline at all. This overall means that there is no
peak in the right wave, making it monotone.
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Figure 3.7: Plot of case 3, Λ = 0.1, c = 2,
with 3 waves plotted at time spacings of
20
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Figure 3.8: Phase Plane for case 3, Λ =
0.1, c = 2, showing the left null-cline
(green), right null-cline (red), and wave
trajectory (blue) between the two steady
states (black dots)
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Figure 3.9: Plot of case 3, Λ = 0.2, c = 2,
with 3 waves plotted at time spacings of
20
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Figure 3.10: Phase Plane for case 3, Λ =
0.2, c = 2, showing the left null-cline
(green), right null-cline (red), and wave
trajectory (blue) between the two steady
states (black dots
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Figure 3.11: Plot of case 3, Λ = 0.3, c = 2,
with 3 waves plotted at time spacings of
20
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Figure 3.12: Phase Plane for case 3, Λ =
0.3, c = 2, showing the left null-cline
(green), right null-cline (red), and wave
trajectory (blue) between the two steady
states (black dots
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Section IV

Conclusion

In biological wound healing, a cell front exists at the edge of the wound. As time progresses, this front
invades the unhealed territory leaving full density healed cells behind it. This is a strong example of
biological travelling wave behaviour. In wounds, as the healing progresses, it shows dominance in inwards
motion. As the model analysis performed previously shows, this corresponds to a low Λ value meaning
the turning force (λ) is not as dominant as proliferation (θ). Thus, a low Λ value appears to be the most
biologically relevant choice for the model.

For further research, the model could be extended in many different ways. Firstly, it could be extended
into higher dimensions through modifying the original velocity-jump process to account for 2-dimensional
motion. Equally, it could be modified to account for other dynamics beyond proliferation and turning.
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