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Abstract

Poisson point process (or Poisson process) has important implications and
wide applications in one and more dimensions. Kingman (1993) provides the
main theorems and properties of Poisson process. Referring to his book I will give
a brief review of those fundamental properties in the general settings on a Polish
space in section 2. The idea of Poisson Laplace Functional given in Serfozo (2009)
is introduced.I will then relate it to another important tool called Campbell’s
Theorem in section 2.2. Using these fundamental properties, I extend the simple
road traffic model given by Kingman (1993) to a model regarding a number of
vehicles involved in road tolls as a Poisson process in section 3. Following this, I
will provide an extension using the technique of product space representation of
the process. In the last section we employ the technique of Pearson’s chi-squared
goodness-of-fit test to perform statistical inference. I conclude that the reliability
of modelling the number of vehicles in road tolls is a Poisson process.



Preface

AMSI Vacation Research Scholar Experience

I I can now appreciate how the development of modern probability theory and stochas-
tic processes sits comfortably between Pure Mathematics (Measure Theory in partic-
ular) and Statistical Sciences. During the course of the project I learnt that one needs
to do a substantial level of reading, writing and thinking in order to get to a rea-
sonably serious level of understanding and research in Mathematics and Statistics.
This experience has provided a glimpse at the academic research side of Mathematics
and Statistics. It is an invaluable opportunity invaluable and and has significantly
strengthened my eagerness to pursue further study. The CSIRO Big Day In at Mac-
quarie University is definitely an irreplacable experience as part of my undergraduate
life. It is so exciting and rewarding to meet like-minds from all around Australia and
listen to their presentations. As a final comment I strongly recommend this vaca-
tion research scholarship program to fellow students interested in Mathematics and
Statistics.

Acknowledgements

I will close the preface section with a few acknowledgements. First and foremost, I
would like to thank my supervisor A/Prof. Aihua Xia for his patient guidance during
the course of the research project. Also, for his insightful advice on this research paper
even after the formal period of vacation research scholarship had ended. Without him,
this project would not be possible. I am also grateful to all my mentors in Mathematics
and Statistics at the University of Melbourne. I would also like to extend my gratitude
to AMSI, the CSIRO and the University of Melbourne for the generous provision of
funding and opportunities of undergraduate research. Last but definitely not least I
would like to give special thanks to my family and friends for their constant support.



1 Introduction

The name of Poisson process originates from Poisson distribution, which is considered
as the limiting case of a binomial distribution1. Formally, X is a Poisson random
variable with parameter measure Λ if it takes only non-negative integer values n and
has probability mass function

P (X = n) = πn(Λ) :=
ΛneΛ

n!
, n ∈ Z+ := {0, 1, 2, ...}. (1)

For the sake of brevity, lengthy proofs are replaced by sketch of proofs to avoid over-
loading of technicality. Readers interested in pursuing proofs and derivations in detail
will be directed to respective references. Kingman (1993) provides a concrete introduc-
tion of the theory of Poisson process in Kingman (1993). Section 2 of this paper gives
a brief review of the main theorems of Poisson process stated in his book together with
sketched proofs. Readers looking for proofs in detail are advised to consult Kingman
(1993). These properties form an important basis for developing our model in section 3.

Now we state the first theorem in this paper, a powerful result which gives information
about infinite sums and conditions about convergence of Poisson random variables.

Theorem 1.1 (Countable Additivity Theorem). Consider independent Poisson ran-
dom variables Xj each equipped with parameter µj, j ∈ N+. If σ =

∑∞
j=1 µj converges,

then S =
∑∞

j=1Xj is a Poisson random variable with parameter σ and S converges

almost surely2. However if σ =
∑∞

j=1 µj diverges, then S =
∑∞

j=1 Xj diverges almost
surely.

Proof. Let Sn =
∑n

j=1Xj. By mathematical induction it follows that Sn is a Poisson
random variable with parameter σn =

∑n
j=1 µj. Thus for any r ≥ 0, P (Sn ≤ r) =∑r

k=0 πk(σn). Since for fixed r the events {Sn ≤ r} decreases with n, it easily follows
that

P (S ≤ r) = lim
n→∞

P (Sn ≤ r) = lim
n→∞

r∑
k=0

πk(σn). (2)

If σn converges to some finite σ, by continuity of the Poisson probability mass func-
tion, (2) becomes

∑r
k=0 πk(σ) so that P (S = r) = πr(σ) and hence S is a Pois-

son random variable with parameter σ. However if σn diverges,
∑r

k=0 πk(σn) =

1The reader who is interested in pursuing the derivation of a Poisson probability mass function
from a binomial one is recommended to read page 2 and 3 of Kingman (1993).

2An event K is said to occur almost surely when P (K) = 1.



exp(−σn)
∑r

k=0 σ
k
n/k! → 0 and implies P (S > r) = 1 for all r, hence S diverges

almost surely and the proof is complete.

2 Poisson Process

2.1 Definition and fundamental properties

In terms of the mathematical setting, we define the probability space (Ω,F ,P ) with
P (Ω) = 1, where Ω is often referred to as the sample space. Suppose there is a basic
collection of measurable3 sets of points ω ∈ Ω. The σ-algebra F is completed by sets
of probability zero. a Polish space4 S with the σ-algebra A = A(S) of Borel subsets.
The Polish space S is referred to as the state space. The Polish space S is usually
a d-dimensional Euclidean space for some d, or more generally a manifold, which is
locally equivalent to Rd.

Let Π denote our Poisson process. A clear definition of what a Poisson process is
will be given in next subsection. For any test set A ∈ A write the count function
N(A) : Ω→ {0, 1, ...,∞} as

N(A) = #{Π ∩ A}. (3)

We require this to be a measurable mapping. A more sophisticated way of defining
the count function is in form of a Dirac measure5, that is,

N(A) =
∑
x∈Π

δx(A). (4)

Now we have the background knowledge to state the definition of a Poisson process.
While the count function N itself is often referred to as a Poisson process by many
authors, for instance, Grimmett and Stirzaker (1991), Borovkov (2003) and Serfozo
(2009), for the sake of generality we follow the construction suggested in Kingman
(1993).

Definition 2.1. A Poisson Process is a random countable subset Π ⊂ S, defined on a
probability space (Ω,F ,P), such that

3Sets from the σ-algebra F are said to be measurable subsets of Ω. For a more precise mathematical
setting of measurability of sets in detail, see page 19 in [4].

4A Polish space is a compelete separable metric space or more generally a completely separable
metrisable topological space.

5A Dirac measure is a measure δx such that δx(A) = 1(x ∈ A), where 1(.) is the indicator function.



1. for a finite choice of disjoint subsets A1, ..., An ⊂ A, N(A1), ..., N(An) are sta-
tistically independent,

2. and for all A ⊂ A, N(A) is a Poisson random variable with mean measure6

µ(A) = E[N(A)] ∈ [0,∞]. µ is called the mean measure of N .

We assume that for any position there is no overlapping of points in Π. Hence it is
important to remark that µ must satisfy a specific condition to be defined as a mean
measure, as stated below.

Remark 2.2. A mean measure must be non-atomic such that

µ({x}) = 0, ∀x ∈ S. (5)

Proof. Assume not. Suppose the measure µ has an atom at x ∈ S, such that µ({x})>0.
Then P (N({x}) ≥ 2) = 1− e−µ({x}) − µ({x})e−µ({x}) > 0, a contradiction.

Unless stated otherwise, throughout the discussion we assume µ is non-atomic in
the sense of (5). When we refer the Polish space to some Euclidean space of dimension
d, the mean measure µ is absolutely continuous with respect to the Lebesgue measure
dx and given by some rate or intensity function λ(.) as follow:

µ(A) =

∫
A

λ(x) dx. (6)

Here we say λ(x) is location-dependent with respect to the measurable mapping N(.).
When λ(x) = λ, a constant, we say that the Poisson process is homogeneous. Note
that dx in the sense of (6) is not necessarily one-dimensional.

2.2 Campbell’s Theorem and Poisson Laplace functionals

In this section we introduce Campbell’s Theorem which establishes a general master
equation (9). Using Campbell’s Theorem we obtain the Poisson Laplace functional, a
very important tool for deriving properties and theorems of a Poisson process. King-
man (1993) gave the entire version of Campbell’s theorem, leading to straightforward
computation of expectations and variances of sum of Poisson process. We state the full
version of Campbell’s theorem, but only give a partial proof, which serves our purpose
to establish the Poisson Laplace functional.

6It is sometimes called the parameter measure, parameter function, leading measure, first moment
measure or mean measure in the statistical literature.



Theorem 2.3 (Campbell’s Theorem). Suppose Π is a Poisson process on a Polish
space S with mean measure µ and suppose f : S → R is a measurable mapping. Define
the sum as

Σf =
∑
X∈Π

f(X). (7)

It is absolutely convergent with probability if and only if∫
S

min(|f(x)|, 1)µ(dx) (8)

is finite (or µ-integrable). If such condition holds, then

E(eθΣf ) = exp

{∫
S

(eθf(x) − 1)µ(dx)

}
(9)

for any θ ∈ C such that the integral converges. Also, the expectation

E(Σf ) =

∫
S

f(x)µ(dx) (10)

is defined whenever the integral converges. If (10) is finite then the variance

Var(Σf ) =

∫
S

f(x)2µ(dx) (11)

exists in the sense that it may be either finite or infinite.

For our purpose it suffices to give a partial proof of the theorem, showing that (9)
holds in the case when f ≥ 0. Readers interested in pursuing the entire proof in detail
is advised to consult page 28 to 30 in Kingman (1993).

Partial proof. For θ ∈ C and f simple7, let Aj = {x; f(x) = fj} be disjoint and
measurable with locally finite8 mean measure mj = µ(Aj). Then Nj = N(Aj) are
independent Poisson random variables with parameter mj and Σf =

∑
X∈Π f(X) =

7f is called simple if it is a function that takes a finite number of values f1, ...fn with finite
µ-measures and vanishes outside a set of finite µ-measures

8A measure is called locally finite if every point of the measure space has a neigbourhood of finite
measure.



∑n
j=1 fjNj. Now

E
{
eθΣf

}
=

n∏
j=1

E
{
eθfjNj

}

= exp

{ n∑
j=1

∫
Aj

(eθf(x) − 1)µ(dx)

}
= exp

{∫
S

(eθf(x) − 1)µ(dx)

}
.

Now we know that (9) holds for simple functions f . We are going to extend this
to any positive measurable functions by integration theory. Consider the case when
f is positive. Taking θ = −u real and negative, writing Σfj =

∑
X∈Π fj(X) for

{fj} being an increasing sequence of simple functions having limit f , we deduce that

E(e−uΣf ) = limj E(e−uΣfj ) = exp
{ ∫

S
(e−uf(x) − 1)µ(dx)

}
by Lebesgue’s monotone

convergence theorem. We know that if (8) holds, the integral on the right hand side
converges showing that Σf is a finite random variable. However if (8) does not hold,
the integral diverges and E(e−uΣf ) = 0, indicating that Σ is infinite almost surely. So
the theorem is proved for f ≥ 0.

Restricting Campbell’s theorem to the condition that f : S → R+ and setting
θ = −1, we now obtain the Poisson Laplace Functional9, namely

E
{
e−Σf

}
= exp

{
−
∫
S

(1− e−f(x))µ(dx)

}
. (12)

We remark that the Poisson Laplace Functional uniquely defines a Poisson process.

2.3 Sum of Independent Poisson Processes

The Poisson process has a number of special properties which often makes calculations
and derivations surprisingly neat and simple to analyse. We first look at the super-
position theorem regarding the sum of independent Poisson processes, the proof of
which requires a knowledge of the Countable Additivity Theorem and a lemma called
the Disjointness Lemma. For sake of brevity we state the lemma without proof here.
Readers interested in pursuing a detailed proof is advised to read page 15 in Kingman
(1993). Below we assume A is a measurable set on S.

9A derivation of the Poisson Laplace Functional without using Campbell’s Theorem is written on
page 185 of Serfozo(2009).



Lemma 2.4 (Disjointness Lemma). If Πj and Πk are independent Poisson processes
each equipped with locally finite non-atomic mean measure µj(.) and µk(.), then Πj and
Πk are disjoint almost surely. Algebraically,

P (Πj ∩ Πk ∩ A = ∅) = 1. (13)

An obvious implication of the lemma is that n Poisson processes are disjoint on
some measurable set as long as they are independent.

Theorem 2.5 (Superposition Theorem). Consider independent Poisson processes Πj

each with locally finite mean measure µj. It follows that their superposition Π =⋃∞
j=1 Πj is a Poisson process on S with mean measure µ =

∑∞
j=1 µj.

Proof. Let Nj(A) = #{Πj ∩A}. The Disjointness Lemma shows the independent sets
Πj are disjoint on A. Hence if each µj(A) is locally finite, we have

N(A) =
∞∑
j=1

Nj(A). (14)

By the Countable Additivity Theorem, N(A) is a Poisson random variable with mea-
sure µ = µ(A) =

∑∞
j=1 µj. In addition, if for some j, µj(A) is not locally finite, again

by the Countable Additivity Theorem Nj(A) = N(A) =∞ with probability 1 and (14)
holds trivially. Moreover, N(Aj) are disjoint for each j and Nj(An) are all independent
for j ∈ N and n = 1, ..., k. Hence for disjoint An it follows that N(An),n = 1, ..., k, are
independent and the proof is complete.

Theorem 2.5 immediately leads to the following corollary, giving information about
a finite sum of independent Poisson processes.

Corollary 2.6. Let Πj, j = 1, ..., n, be independent Poisson processes each with locally
finite mean measure µj. It follows that their superposition Π =

⋃n
j=1 Πj is a Poisson

process with mean measure µ =
∑n

j=1 µj.

Proof. Following the proof of Theorem 2.5, for k = n+ 1, n+ 2..., take Πk = ∅ and the
result follows.

2.4 Transformation of Poisson Processes

Another important theorem of Poisson process Π is its preservation of properties under
measurable mapping (Kingman, 1993). If Π on the Polish space S is mapped onto



another Polish space T , the mapped random points form a Poisson process under some
specified conditions. For instance, we need µ to be σ-finite10. In a formal sense the
theorem is stated as follows.

Theorem 2.7 (The Mapping Theorem). Consider a Poisson process Π on a Polish
space S equipped with a σ-finite and non-atomic mean measure µ, Φ : S → T a
measurable function such that the induced mean measure µ∗ on T is again non-atomic
given our assumption of no overlapping of points. Then Φ(Π) is a Poisson process on
T with mean measure µ∗.

Proof. (Sketch) We make use of the Disjointness Lemma and Superposition Theorem
in the proof. Given the σ-finiteness condition, assume there exists disjoint Si such that
S =

⋃∞
i=1 Si with µ(Si) < ∞. Write Πi as the restriction of Π to Si. Then Πi are

independent Poisson process with locally finite mean measure µi. So are Φ(Πi) with
induced mean measure µ∗i . The Disjointness Lemma immediately tells that Φ(Πi) are
almost surely disjoint on S. Hence by the Superposition Theorem, Φ(Π) = Φ(

⋃
i Πi) =⋃

i Φ(Πi) is again a Poisson process with induced mean measure µ∗ =
∑

i µ
∗
i . The

reader interested in pursuing a detailed proof is advised to read page 18 and 19 in
Kingman (1993).

2.5 Existence of Poisson Processes

We now move on to another important property which serves as a reverse argument of
what we have covered earlier. Here we seek to show the existence of a Poisson process
with given mean measure µ on a Polish space S.

Theorem 2.8 (The Existence Theorem). If µ =
∑∞

i=1 µi with locally finite µi(S), then
a Poisson process exists on S with mean measure µ.

Proof. (Sketch) We follow the construction given by Kingman (1993). Without loss
of generality, construct positive mean measures µn and independent random variables
Nn and ξnk where n, k ∈ N in the sense that Nn is a Poisson random variable with
mean measure µn(S) and ξnk having distribution pn(.) = µn(.)/µn(S). Write Πn =
{ξn1, ..., ξnNn} and

Π =
∞⋃
n=1

Πn. (15)

10The σ-finiteness condition guarantees that the Polish space S can be written as a countable union⋃∞
i=1 Si with µ(Si) <∞.



If we write Nn(A) = #{Πn∩A}, for disjoint A1, ...Ak, A0 = (
⋃k
i=1Ak)

c, m =
∑k

i=0 mi,
by the Law of Total Probability, it can be shown that

P (Nn(A1) = m1, ..., Nn(Ak) = mk) =
k∏
i=0

πmi
(µn(Ai)). (16)

Hence it implies that Nn(Ai) are independent random variables with distribution
Pn(µn(Ai)). Thus Πn are independent Poisson process with non-atomic mean measure
µn. By the Superposition Theorem, (15) shows Π is a Poisson process with mean mea-
sure µ. The reader interested in pursuing a detailed proof, in particular the derivation
of (16), is advised to read page 24 in Kingman (1993).

2.6 The Colouring Theorem

We will discuss two simple, yet very useful, results of marked Poisson process which
underpin the construction of our road toll traffic model. The first one is the Colouring
Theorem, while the other is the Marking Theorem. As before, we denote our Poisson
process Π having locally finite mean measure µ on a Polish space S. We construct as
follows. Assume we have z different colours with z being a finite positive integer. If
the points on a Poisson process independently receives the jth colour with probability
pj, we get to the Colouring Theorem by writing Πj as the set of points with the jth

colour.

Theorem 2.9 (The Colouring Theorem). The Πj are independent Poisson processes
with mean measures µj = pjµ.

Proof. (Sketch) We prove by induction. First we start with z = 2. For any A ⊂ S, let
N(A) denote the number of points in A, N1(A) the number of points with 1st colour
(with probability p1) in A, N2(A) the number of points with 2th colour (with probability
p2) in A such that

∑
i∈{1,2} pi = 1. Now N(A) is a Poisson random variable with

parameter µ(A). It follows that N1(A) and N2(A) (or N(A)−N1(A)) are independent
Poisson random variables with parameters p1µ(A) and p2µ(A) respectively 11. By
mathematical induction on the number of colours to any finite number z the theorem
follows.

11The reader interested in pursuing the proof of this statement can read page 163 and 164 of
Borovkov(2003).



2.7 Marked Poisson Processes

In this section we introduce the Marking Theorem. The Marking Theorem serves as
a generalisation of the Colouring Theorem, as the latter is often too restrictive at the
time of application. In order to prove the theorem, we first recall the Poisson Laplace
Functional:

E
{
e−Σf

}
= exp

{
−
∫
S

(1− e−f(x))µ(dx)

}
. (17)

Now suppose for each x ∈ X on Π, we give a mark mx ∈ M , where M is some
measurable space called the marking space. The mark of x is independent to each
other with different x. In terms of the pair (X,mX), we obtain a random countable
subset

{(X,mX);X ∈ Π} = Π∗ ⊂ S ×M. (18)

Now let p : S ×M → [0, 1] be a probability kernal12. The fundamental result of the
Marking Theorem is as follows.

Theorem 2.10 (The Marking Theorem). The random countable subset Π∗ is a Poisson
process on the product space S ×M with mean measure given by

µ∗(C) =

∫∫
(x,mx)∈C

p(x, dm)µ(dx). (19)

Proof. (Sketch) Again we follow the construction given in Kingman (1993). Write

Σ∗ =
∑
X∈Π

f(X,mX) (20)

f∗(x) = − log

∫
M

exp

{
− f(X,mX)

}
p(X, dm) (21)

and replace Σf and f(x) in our Poisson Laplace functional (17) by (20) and (21)
respectively to compute13

E
{
e−Σ∗

}
= exp

{
−
∫
S

∫
M

{
1− e−f(x,mx)

}
µ(dx)p(x, dmx)

}
= exp

{
−
∫
S×M

(1− e−f )dµ∗
}
,

12A probability kernel is a probability measure p(x, .) on M for x ∈ S such that p(., B) is a
measurable function on S for B ⊂M .

13The reader who intends to pursue the detailed proof, in particular a detailed derivation of (21)
and E(e−Σ∗

) should read page 56 of Kingman (1993).



showing that Π∗ follows a Poisson process with mean measure µ∗ given by (19).

The theorem immediately leads to the following corollary.

Corollary 2.11. The marks of X, mX , is a Poisson process on M .

Proof. This is true because of the mapping theorem. The non-atomic mean measure
of mX can be computed by putting C = S ×B in (19):

µm(B) =

∫
S

∫
B

p(x, dm)µ(dx). (22)

The theorem also suggests a generalisation of the Colouring Theorem by allowing
the probabilites of colouring to change with respect to different values of x. As assumed
in section 2.6, if there are z <∞ different marks, the theorem implies that the points
coloured with the ith mark is a Poisson process (independent with other i’s) with
non-atomic mean measure

µi(A) =

∫
x∈A

p(x, {mi})µ(dx). (23)

Remark 2.12. The probability of colouring now varies with x. For the ith mark,
pi = p(x, {mi}).

3 Application to Traffic Models

In this section, we use the theorems and properties developed in previous paragraphs
to establish the road toll model as a Poisson process. We extend the simple one-
dimensional model of the number of cars as a Poisson process given by Kingman
(1993).

3.1 Poisson Road Toll Model

Let S, the state space, be the real line R that represents the road and the points
repesent each car. We construct the model as follows. Observe that the distribution
of cars is not fixed with time because cars are moving with different speed. Taking
a snapshot of the road R at some time point t, it may be realistic to model the cars



as a Poisson process. An interesting question will be whether the cars form a Poisson
process at some later times t, given that they form a Poisson process at t = 0. To
solve the question, Kingman (1993) suggests we assume the speeds of the cars are
random variables, independent of one another and their position on the road. We also
construct a finite set of speeds a vehicle involved in road tolls can take

S = {s1, s2, ..., sk}, where s1 < s2 < ... < sk (24)

Let pj be the probability that a vehicle involved in road tolls moves at a speed of sj.
Thus we obtain the finite set of respective probabilities:

P = {p1, p2, ..., pk}, where
k∑
j=1

pj = 1 (25)

We also assume overtaking is unrestricted. From a practical point of view, the state-
ment above assumes overtaking is uninhibited. One may think of freeways and high-
ways as a real world example. At this point the model is built, where statistical
evidence will be presented in the following section. We solve the problem step by step
using the properties we have derived in previous sections. It turns out that we can
treat the solution of this question as an application of the Colouring Theorem, the
Mapping Theorem, the Disjointness Lemma and the Superposition Theorem.

Write Πj as the set of cars moving at speed sj in t = 0 with a positive measurable
intensity function pjλ(x). By the finiteness assumption of the set of possible speeds,
the Colouring Theorem guarantees that Πj are independent Poisson processes for each
j = 1, ..., k. One reason why we partition the set in terms of respective speed, instead
of our properties of the vehicles, is that we can explicitly establish a mapping of the
Poisson process from period i of year Y to some time later as follows. At time t the
position of the cars form a Poisson process Πj + sjt obtained by translating Πj by sjt.
We create a measurable mapping Φ : R→ R in the sense that

Φ
{

Πj

}
= Πj + sjt = Πj(t). (26)

Now in accordance with the Mapping Theorem, the number of vehicles with speed
sj involved in road tolls at t, Πj(t), again forms a Poisson process. Since for each
j = 1, ..., k, Πj + sjt is an independent Poisson process, again by the Disjointness
Lemma we conclude that they are disjoint. Applying the Superposition Theorem, we
see that the cars at a later time t, denoted by

Π(t) =
k⋃
j=1

Πj(t) =
k⋃
j=1

{
Πj + sjt

}
, (27)



is again a Poisson process. In terms of the rate of Π(t), we see that each Πj + sjt
admits a rate of pjλ(x − sjt). Hence the second part of the Superposition Theorem
implies that Π(t) has rate

λt(x) =
k∑
j=1

pjλ(x− sjt). (28)

Now if we assume the probability of accidents is some β > 0 (which should be very
small), applying the Colouring theorem again, we see that the traffic accidents at time
t again follow a Poisson process.

An immediate and significant implication of (28) is that if the cars admit a homoge-
nous Poisson process with some constant parameter λ at time 0, they form again a
homogenous Poisson process at some later time t. As the state space is R, the process
being homogenous implies that it is also a renewal process whose inter-arrival times
are independent exponentially distributed with parameter λ14.

3.2 Extension by Product Space Representation

It is often desirable to obtain a simple model, so calculations can be neat. However
the simple model presented above has several obvious limitations. Firstly, we should
accept that the finiteness assumption of the set of possible values of speed does not
hold true in practice. We can improve this by making the difference between each sj
very small and giving approximation of all possible speeds in practice. Furthermore,
the assumption that the speed remains constant at all times and independent of the
position of the vehicle is not realistic. Therefore it is natural to start with a product
space representation similar to (18) used in the Marking Theorem which improves the
generality of the model and eliminates the limitations stated above. This is suggested
in Kingman (1993). In section 3.1, we first require the assumption that the speeds
of vehicles involved in road tolls are independent random variables with respect to
speeds of others and their respective position on roads. By means of the product space
representation, we can now partially relax these assumptions. All we need to assume
is the independence of movements of different vehicles. This should be a realistic
assumption on freeways and highways where the road is relatively wide and has no
restriction of overtaking (in most instances). Suppose the vehicles involved in road
tolls form a Poisson process Π with intensity λ(x) at time 0. In order to model the
position of those vehicles at some later time t as a Poisson process Π(t), we assume

14The proof of this fundamental property is written on page 173 and 174 in Serfozo(2009).



that the movements of vehicles involved in road tolls are independent. Write Ψt(X) as
the position at some time t. Under such construction the position of the car at some
later time depends on current position. Now in accordance with the assumption that
Ψt(X) are independent for each X, as in section 2.7,Ψt(X) forms a marking of Π(t)
and also by the Marking Theorem the pair (X,Ψt(X)) forms a Poisson process Π∗(t)
with the product space representation

Π∗(t) = {(X,Ψt(X));X ∈ Π} ⊂ R2. (29)

Now suppose Φ : R× R→ R is a measurable mapping such that

Φ(X,Ψt(X)) = Ψt(X). (30)

By the Mapping Theorem we deduce that Ψt(X) forms a Poisson process Π(t). Again
if we assume the probability of accidents is some β > 0 (which should be very small),
applying the Colouring theorem again, we see that the traffic accidents at time t again
follow a Poisson process. Such construction efficiently removes the assumption that
the speed sj remains constant for all time. Now, in accordance with Remark 2.12,
the probability that a specific speed is taken now varies with the vehicle’s specific
position. Finally, we remark that this model requires that the movement of vehicles
is independent. If this assumption does not hold true the Marking Theorem would
not follow. More serious is that it violates the basic definition of a Poisson random
variable.

3.3 Superposition of the Model in the Case of Australia

One may notice the need of the Poisson road toll model to be equipped with different
rate functions, possibly due to differences in situations such as development, technology
and driving education. I will give an extension of the model in relation to Australian
geography, however it should be noted that this also applies to other countries. . For
the sake of convenience, we use short form to identify different states and territories
in Australia. For instance, V denotes Victoria, NSW denotes New South Wales, Q
denotes Queensland, WA denotes Western Australia, SA denotes South Australia, NT
denotes Northern Territory and finally T denotes Tasmania. Let α be an element of
the set A = {V,NSW,Q,WA, SA,NT, T}. Assume at time 0 the number of vehicles
involved in road tolls in α follows a Poisson process Πα with rate λα(x). It may be
reasonable to assume that for each α ∈ A, Πα are independent Poisson processes. Now
by the Disjointness Lemma we deduce that for each α ∈ A, Πα is disjoint. Hence we



can apply the Superposition Theorem and conclude that at some later time t the cars
in all area of Australia ΠAU(t) follow a Poisson Process

ΠAU(t) =
⋃
α∈A

Πα(t) (31)

with rate
λAU(x) =

∑
α∈A

λα(x). (32)

3.4 Possible Future Development and Research

In this section I will provide possible extensions or future developments for this model.
Kloeden, McLean and Glonek (2002) give a logistic model between relative risk of
casualty crash involvement (RR) and a given free travelling speed (v):

RR(v) = exp{−0.822957835− 0.083680149v + 0.001623269v2} (33)

By standard computation the first order derivative of RR(v) equals

RR′(v) = (−0.83680149+0.3246538v) exp{−0.822957835−0.83680149v+0.1623269v2}
(34)

It follows that RR(v) is an increasing function of v for v > 25.77519468. This relation
aligns with the example given by Kloeden et. al. that the relative risk is 3.6 times
greater for a vehicle travelling in a 60 km/hr zone at a speed of 70 km/hr than at a
speed of 60 km/hr15. In addition, research by TAC (2002) shows that in a metropolitan
area the risk of of being involved in a crash increases exponentially. Based on these
research results, one may want to exploit the relationship between the number of vehi-
cles involved in road tolls in a given time period N(At) for some time t and our set of
possible speeds in (24), in particular the upper limit sk. Intuitively speaking, injuries
and road tolls may also occur when a proportion of road users drive at a slower speed
alongside others who are driving at a higher speed. This suggests that one may also
want to exploit the relationship between the lower limit s1 of the set S and N(At). A
rigorous model and mathematical relation between elements of the set S and N(At)
therefore needs to be established.

The assumption that we need movements of vehicles to be independent from others

15Kloeden et. al. give detailed reasons in their paper and state that the curve should not be
interpreted literally below v = 25.77519468 where the slope changes sign.



may be realistic in rural areas, but it does not apply to the Central Business District.
Within the Central Business District it should be accepted that overtaking is inhibited
and movements of vehicles are not independent. Vehicles move in a way dependent to
each other. Dependence between movement of vehicles is often a crucial factor needed
to be taken into account. We have made several important assumptions for the sake
of simplication and consistency of Poisson. In a strict sense, the Poisson process may
not be a sufficient model as the independence assumption is often not satisfied. Thus
traffic modelling has become an active research topic in recent decades, using various
mathematical techniques such as graph theory, stochastic modelling and statistics.. A
challenge that still remains is to build a more concrete mathematical model to better
simulate and predict the real world settings and environment.

4 Statistical Inference of Poisson Process

In this section we test the reliability of a Poisson Model on road tolls. Recall the
definition of a Poisson process as stated in definition 2.1. We construct a reasonable
and suitable set of disjoint subsets by restricting the time interval from year 2008 to
2012. Observations are confined within Victoria, where the age of road users stays
between 18 to 25. This is to ensure a similar set of driving skills and experience.
Suppose A1 = January, A2 = February, ..., A12 = December, N(Ai) is the number of
vehicles involved in road tolls in month Ai. It is clear that Ai are disjoint. It is almost
impossible to check the independence condition within the first section of the Poisson
process definition. Having said that, we move on to the statistical inference of the
second half. We want to examine whether N(Ai) follows a Poisson random variable
in the traffic model. In particular, using the road statistics provided by Vicroads, we
perform the Pearson’s chi-squared goodness-of-fit test. In short, the Pearson’s chi-
squared goodness-of-fit test involves the comparison between the chi-squared statistic
χ2 and a critical value χ2

α(k − 1), where k − 1 denotes the degree of freedom and α is
the desired significance level of the test. The chi-squared statistic is computed by

χ2 =
k∑
i=1

(Oi − Ei)2

Ei
=

k∑
i=1

(Oi − npi)2

npi
, (35)

where Oi denotes the observed frequency, Ei expected frequency, n the total number
of events, pi the probability of the ith event. Throughout, we test the null hypothesis
that our distribution follows Poisson. Hence under level of significance α, we reject the



null if and only if

χ2 > χ2
α(df), where df is the degree of freedom. (36)

Data regarding the number of monthly road tolls of age 18-25 in the Melbourne area
from 2008 to 2009 is depicted in the table below:

Month Oberved Frequency Oi

January 2008 5
February 2008 2
March 2008 7
April 2008 8
May 2008 10
June 2008 6
July 2008 6
August 2008 6
September 2008 4
October 2008 6
November 2008 6
December 2008 10
January 2009 12
February 2009 2
March 2009 5
April 2009 5
May 2009 5
June 2009 11
July 2009 3
August 2009 4
September 2009 2
October 2009 6
November 2009 4
December 2009 4

For a set of data {X1, ..., Xn}, the maximum likelihood estimator for the mean measure
of a Poisson distribution is its X̄/n, where X̄ =

∑n
i=1Xi. Hence based on the data

presented in the above table, the maximum likelihood estimator µ̂ of µ is 141/24
provided it follows a Poisson distribution. Now we test the null hypothesis N(Ai) is
a Poisson random variable with mean 141/24 versus the alternative hypothesis that
N(Ai) is not a Poisson random variable.



Remark 4.1. It is important to keep in mind we do not prove it is a Poisson random
variable. What we show with hypothesis testing is that oue data does not violate the
possbility that it follows Poisson.

Partition the observations into setsB1 = {0, 1, 2, 3, 4}, B2 = {5, 6}, B3 = {7, 8, 9, 10, ...}16.
We compute the respective probabilities of each set occuring and the expected number
of road tolls Ei as follow:

- B1 B2 B3

Observed Frequency Oi 8 10 6
Probability P (Bi) 0.3021365 0.3242354 0.3736281
Expected Frequency Ei 7.251276 7.78165 8.967074

Using (35) and information from the table above, it follows that the chi-squared test
statistic χ2 = 1.691465. Since we estimated µ̂ = 141/24, χ2 has an approximate chi-
squared distribution of 3 − 1 − 1 = 2 degrees of freedom. Now under 5% level of
significance,

χ2 = 1.691465 < 3.841 = χ2
0.05(1) (37)

we do not reject the null hypothesis. That is, given the data obtained, we do not reject
that the number of monthly road toll is a Poisson random variable (the second half
of the definition of Poisson process). To conclude, by the evidence of Fisher’s exact
test of contingency tables and the Pearson’s chi-squared goodness-of-fit test, Poisson
process may be used to model the number of monthly road tolls as shown above.

Now we have shown that the number of monthly road tolls in the period 2008 - 2009
can be modelled as a Poisson process. In section 3.1, we develop a theoretical model
which states that if Π is a Poisson process at a given time, it is again a Poisson process
at some time later. We are going to perform the Pearson’s chi-squared goodness-of-fit
test to check if the data of monthly road tolls in 2011 - 2012 of age 18 - 25 follows a
Poisson Process. Following similar procedures as we did with the data in 2008 - 2009,
we first depict the observed frequency of monthly road tolls given by VicRoads in the
following table:

16We partition in such a way that the expected frequency of each set is larger than 5, as suggested
by many authors that the Pearson’s chi-squared goodness-of-fit test should be used only when the
expected frequency is larger than or equal to 5.



Month Observed Frequency
Oi

January 2011 3
February 2011 2
March 2011 9
April 2011 8
May 2011 7
June 2011 9
July 2011 8
August 2011 1
September 2011 2
October 2011 5
November 2011 8
December 2011 5
January 2012 7
February 2012 6
March 2012 6
April 2012 3
May 2012 8
June 2012 3
July 2012 4
August 2012 4
September 2012 4
October 2012 5
November 2012 7
December 2012 9

Based on the data presented in the above table, the maximum likelihood estimator
µ̂ of µ is 133/24 provided it follows a Poisson distribution. Now we test the null
hypothesis, that the number of monthly road tolls is a Poisson random variable with
mean 133/24 versus the alternative hypothesis that it is not a Poisson random variable.

Again, we partition the observations into sets C1 = {0, 1, 2, 3, 4}, C2 = {5, 6}, C3 =
{7, 8, 9, ...}. We compute the respective probabilities of each set occuring and the
expected number of road tolls Ei as follow:



- C1 C2 C3

Observed Frequency Oi 9 5 10
Probability P (Ci) 0.3510625 0.3284148 0.3205226
Expected Frequency Ei 8.4255 7.881955 7.692542

Using (35) and information from the table above, it follows that χ2 = 1.785076. Since
we estimated µ̂ = 133/24, χ2 has an approximate chi-squared distribution of 3−1−1 =
1 degrees of freedom. Now under 5% level of significance,

χ2 = 1.785076 < 3.841 = χ2
0.05(1) (38)

we do not reject the null. That is, given the data obtained, we do not reject that
N(Ai) is a Poisson random variable. To conclude, by the evidence of the Pearson’s
chi-squared goodness-of-fit test, the monthly road tolls in 2012 follows a Poisson pro-
cess. This result does not violate our theoretically developed model in section 3.1. We
do not reject that the monthly road tolls in 2008 - 2009 can be modelled by a Poisson
process, so do those in 2011 - 2012.

The last part of this paper regards the statistical evidence of corallary 2.11 of the
marking theorem. It states the following: Given the pair (X,mX) is a Poisson process
on S×M , the marks of X, denoted by mX , is a Poisson process on the marking space
M . Now we know that the monthly road tolls in 2011 - 2012 can be modelled by a
Poisson process. Let the set of monthly road tolls of males in 2012 be our marking
space. Here we are interested in testing whether the monthly road tolls of males of
age 18 - 25 in 2011 - 2012 again follows a Poisson process as theoretically predicted by
corallary 2.11. The data is depicted in the table below:



Month Observed Frequency
Oi

January 2011 2
February 2011 2
March 2011 5
April 2011 8
May 2011 6
June 2011 9
July 2011 3
August 2011 1
September 2011 2
October 2011 5
November 2011 5
December 2011 4
January 2012 5
February 2012 5
March 2012 4
April 2012 2
May 2012 7
June 2012 2
July 2012 4
August 2012 3
September 2012 2
October 2012 3
November 2012 7
December 2012 6

As before, the maximum likelihood estimator µ̂ of µ is 102/24 provided it follows
a Poisson distribution. Now we test the null hypothesis N(Ai) is a Poisson random
variable with mean 102/24 versus the alternative hypothesis thatN(Ai) is not a Poisson
random variable. Partition the observations into sets D1 = {0, 1, 2, 3}, D2 = {4, 5},
D3 = {6, 7, 8, 9, ...}. We compute the respective probabilities of each set occuring and
the expected number of road tolls Ei as follow:

- D1 D2 D3

Observed Frequency Oi 10 8 6
Probability P (Di) 0.3862116 0.3587275 0.2550609
Expected Frequency Ei 9.269078 8.60946 6.121462



Again, using (35) and information from the table above, it follows that χ2 = 0.103191.
Since we estimated µ̂ = 102/24, Q3 has an approximate chi-squared distribution of
3− 1− 1 = 1 degrees of freedom. Now under 5% level of significance,

χ2 = 0.103191 < 3.841 = χ2
0.05(1) (39)

we do not reject the null. That is, given the data obtained, we do not reject that
the monthly road tolls of males is a Poisson random variable. We have shown in the
beginning of this section that we do not reject the monthly road tolls being statistically
independent random variables, so do those of male. Hence, by the evidence of the
Pearson’s chi-squared goodness-of-fit test, we do not reject that the monthly road tolls
of males in 2012 again follows a Poisson process. This result does not violate our
theoretical conclusion of Corollary 2.11.

References

[1] K. Borovkov, 2003, Elements of Stochastic Modelling, World Scientific , Singapore.

[2] R.A. Fisher, 1925, Statistical Methods for Research Workers, Oliver & Boyd, Ed-
inburgh.

[3] G.H. Freeman and J.H. Halton, 1951, Note on an Exact Treatment of Contingency,
Goodness of Fit and Other Problems of Significance, Biometrika.

[4] A.W. Ghent, 1972, A Method for Exact Testing of 2X2, 2X3, 3X3, and Other Con-
tingency Tables, Employing Binomial Coefficients, American Midland Naturalist,
The University of Notre Dame, vol.88, pp. 15-27.

[5] G.R. Grimmett and D.R. Stirzaker, 1992, Probability and Random Processes, Ox-
ford University Press , New York.

[6] P.R. Halmos, 1950, Measure Theory, Van Nostrand , Princeton.

[7] R.V. Hogg and E.A. Tanis, 2010, Probability and Statistical Inference, Pearson
Prentice Hall, New Jersey.

[8] J.F.C. Kingman, 1993, Poisson Process, Clarendon Press, Oxford.

[9] C.N. Kloeden, A.J. McLean and G.Glonek, 2002, Reanalysis of Travelling Speed
and the Risk of Crash Involvement in Adelaide South Australia, Road Accident
Research Unit, The University of Adelaide.



[10] R. Serfozo, 2009, Basics of Applied Stochastic Processes, Springer, New York.

[11] TAC, 2002, The TAC Wipe Off 5 Campaign.

[12] TAC, Media Room - Online Crash Database - Statistics - TAC Safety, URL:
http://www.tacsafety.com.au/statistics/online-crash-database, accessed on 26 Jan
2013.


