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1 Introduction

Riesen and Bunke (2010) demonstrated that the dissimilarity representation approach
proposed by Pekalska and Duin (2005) outperforms traditional pattern recognition sys-
tems when applied to the domain of noisy graphs [1]. In particular, they had great
success with the task of classifying fingerprints into their basic types (ie arch, whorl
or loop). The dissimilarity representation is a method of embedding a graph to an
n-dimensional vector space. This method helps overcome the complexity of working
with objects in the graph domain, and allows the use of many well defined mathemat-
ical operations in the vector space. The embedding procedure of Pekalska and Duin
uses a graph distance measure against a set of n user-defined prototype graphs. By
means of this method, the graph is then represented in a vector space where each axis
is associated with the input graph’s distance to each prototype graph. We refer to
this space as the dissimilarity space. Riesen and Bunke undertook their thesis using
only a metric distance measure for the embedding procedure, the graph edit distance.
Riesen and Bunke also demonstrated that a well defined set of prototypes is necessary
for successful matching.

In this report, the following questions are addressed:

1. Do randomly generated prototypes distinguish between genuine and imposter
matches in the noisy biometric graph domain?

2. Does a non-metric graph distance measure outperform the graph edit distance
measure used by Riesen and Bunke?



3. Is there an optimum size for the set of prototype graphs?

2 Method

2.1 Biometric Graph Data

The fingerprints used in this project were obtained from the publicly accessible FVC2002
[2] database of fingerprint images. For this work, the DB1 database was used. This
database contains 110 fingerprints, and 8 samples of each fingerprint (880 fingerprint
images in total). Graph representations of the fingerprint images have been obtained
in previous research completed at RMIT University [3]. The minutiae extracted from
the fingerprints represents a node. An edge exists between two nodes if there is a
ridge physically connecting the corresponding minutiae. The graphs were obtained
using manual and automatic extraction methods. The graph obtained is undirected
and nodes are labeled, where the labeling represents the (x,y) co-ordinate of the node.

Figure 1: Examples of graphs extracted from fingerprint images.

2.2 Random Graph Generation

One of the first tasks was to generate a set of graphs for use as the prototype set.
The distribution of the number of nodes, edges and (x,y) co-ordinates of the graphs
obtained from the FVC2002 DB1 set of fingerprints was tested and was found to be
approximately normally distributed. A randomly generated graph is then built with
the following algorithm.



1. Input mean and standard deviation scores for the number of nodes, number of
edges and the (x,y) co-ordinates.

2. Select a random number of nodes from the distribution of the number of nodes.

3. Randomly assign (x,y) co-ordinates to each node, taking co-ordinates from their
respective distributions.

4. Select a random number of edges from the distribution of the number of nodes.

5. Assign the edges to the nodes randomly.

A set of 1000 random graphs for use as prototypes was generated using this method.

Figure 2: A comparison between a randomly generated graph, and a graph extracted
from a fingerprint image. The left graph is the random graph 927, the right graph is
taken from subject 55, sample 2.

2.3 Graph Dissimilarity Measures

The graph edit distance is a function that assigns a cost to the number of distortions
required to turn one graph into another graph. A larger graph edit distance suggests
greater dissimilarity between two graphs, and vice versa. In this project, a suboptimal
algorithm proposed by Riesen and Bunke [4] is used. This algorithm is also used to



obtain the maximum common subgraph between two input graphs.

Figure 3: An example of a graph edit path between two graphs, g1 and g2.

The non-metric distance measure used is the square root distance. This measure of
distance has been shown to outperform metric distance measures when used to match
fingerprint graphs [3]. This function assigns a number [0, 1] according to the number
of matched nodes, edges or a combination of both between two graphs. A score of
1 suggests complete dissimilarity between two graphs and a score of 0 suggests two
graphs are identical. Formally, the square root distance is defined as follows:

Given two graphs g and g′, the square root distance is:

dSQRT = 1− s(g, g′)√
|g||g′|

Where s(g, g′) is the number of matched nodes, edges or a combination of both. |g|
and |g′| is simply the number of nodes, edges or both of g and g′. The number of
matched nodes and/or edges is obtained from the maximum common subgraph.

2.4 Graph Embedding Procedure

The graph embedding procedure is formally defined as follows:

Assume a graph domain G, and set of prototype graphs P = {p1, . . . , pn} with n
graphs is given, the mappping:

ϕPn : G → Rn

is defined as the function:

ϕPn (g) = (d(g, p1), . . . , d(g, pn)),



where d(g, pi) is any graph dissimilarity measure between graph g and the i-th proto-
type graph.

In this case, the prototype set used is a set of graphs generated randomly. By means
of this definition, a vector space where each axis is associated with a prototype graph
pi ∈ P and the coordinates of the embedded graph are the distances of g to the
prototypes of P . Graph embeddings were carried out using the graph edit distance,
and square root distance using nodes, edges and a combination of both. This means
the graphs were embedded into four different dissimilarity spaces.

2.5 Dissimilarity Space Distance Measures

After two graphs g and g′ have been mapped to the dissimilarity space, the distance
between the embedded graphs can be found using any vector space measure. In this
project, the following distance measures were used: Euclidean distance (dEUC), vec-
tor angular distance (dV AD), Chebyshev distance (dCSD) and the Canberra distance
(dCAD). Assume two graphs, g and g′, have been embedded into the dissimilarity space.
Writing ϕPn (g) as ϕ(g) for simplicity, the distance measures are defined as follows:

dEUC(ϕ(g), ϕ(g′)) =

(
n∑

i=1

(d(g, pi)− d(g′, pi))
2

) 1
2

dV AD(ϕ(g), ϕ(g′)) =
1

π
cos−1

(
〈ϕ(g), ϕ(g′)〉
‖ϕ(g)‖‖ϕ(g′)‖

)

dCSD(ϕ(g), ϕ(g′)) = max
i

(|d(g, pi)− d(g′, pi)|)

dCAD(ϕ(g), ϕ(g′)) =
n∑

i=1

|d(g, pi)− d(g′, pi)|
|d(g, pi)|+ |d(g′, pi)|

Essentially, the Euclidean distance is a direct ’ruler’ measure of how far each point is in
the metric space. A high Euclidean distance suggests greater dissimilarity between the
two embedded graphs, and vice-versa. The vector angular distance assigns a number



[0, 1] according to the angle between the two vectors. A 180◦/π angle maps to 1, and a
0 angle maps to 0. The Chebychev distance disregards all other axis’ with the excep-
tion of the axis with the greatest distance between them. The Canberra distance is a
metric distance measure that has been shown to be useful in measuring data scattered
around the origin [5].

2.6 Implementation

The entirety of the project was undertaken using code written in R. 200 graphs were
selected randomly from the set of random graphs generated, making for a prototype set
size of 200. 25 fingerprints, and four samples of each fingerprint were chosen arbitrarily
from the set of FVC2002 fingerprint graphs. A total of 100 graphs were embedded to
the dissimilarity space using the graph edit distance, and square root distance. Scores
for matching fingerprints were obtained by measuring the distance between fingerprint
graphs obtained from the same subject. Scores for imposters/non-matching fingerprints
were obtained by measuring the distance of each fingerprint against a fingerprint taken
from another finger. 75 scores were obtained for matches and non-matches.

3 Results

For a successful separation between genuine and imposter matches, we require an obvi-
ous difference between the scores taken from matches and non-matches. The scores for
matches should be positively skewed, and non-matches negatively skewed. A summary
of the mean scores and their standard deviations is given below. Each cell gives the
mean score, ± the standard deviation. The square root distance using a combination of
nodes and edges offered the best performance, so only these scores have been included.

Table 1: Distance Scores - Prototype Set Size 200

Graph Edit Distance

Genuine Imposters
dEUC 219.72±158.2 272.72±187.89
dV AD 0.0087±0.0038 0.0103±0.0045
dCSD 20.676±11.43 24.365±13.583
dCAD 0.7898±0.576 0.9914±0.6873

Square Root Distance

Genuine Imposters
dEUC 0.2691±0.0447 0.2786±0.0348
dV AD 0.0062±0.0011 0.0064±0.0007
dCSD 0.0707±0.0172 0.0714±0.0169
dCAD 0.1082±0.0228 0.1276±0.0151



No combination of graph dissimilarity measure and dissimilarity space measure offers a
clear separation between genuine and imposter matches. The results suggest the graph
edit distance combined with the Euclidean distance and the vector angular distance
offer the best separation. As can be seen from figures 4 and 5 below, the scores
are more skewed to the left for matches. However, there is still no clear difference
between the two sets of scores and thus this method would not be reliable for the task
of separating between matches and non-matches. Reducing the size of the prototype
set only offered a poorer separation between the match and imposter scores, with the
separation between matches and imposters only getting worse the smaller the prototype
set size. Distance scores for the prototype set size of 100 are included below.

Table 2: Distance Scores - Prototype Set Size 100

Graph Edit Distance

Genuine Imposters
dEUC 155.25±111.76 225.97±151.94
dV AD 0.0086±0.0038 0.0116±0.0051
dCSD 20.185±11.497 27.609±15.561
dCAD 0.5556±0.4052 0.8241±0.551

Square Root Distance

Genuine Imposters
dEUC 0.1863±0.032 0.2018±0.0286
dV AD 0.0061±0.001 0.0064±0.0009
dCSD 0.0597±0.013 0.0609±0.0107
dCAD 0.0757±0.015 0.0912±0.0145

Figure 4: Histogram plots of the distance scores obtained using the graph edit distance
and the Euclidean distance. Prototype set size 200.



Figure 5: Histogram plots of the distance scores obtained using the graph edit distance
and the vector angular distance. Prototype set size 200.

4 Conclusion

The results demonstrate that the metric graph edit distance measure outperforms the
non-metric square root distance when embedding biometric graphs to the dissimilarity
space, and that the Euclidean distance and the vector angular distance were the best
performing measures of distance in the dissimilarity space. The results suggest that
larger prototype set offers the best separation between imposter and genuine matches.
Larger prototype set sizes, such as 500 to 1000, may offer a good separation between the
two scores. This, however would require more computationally efficient graph distance
measures. Computing between the distance between two graphs using the graph edit
distance/maximum common subgraph algorithm took approximately 20 seconds using
an Intel Core 2 Duo 2.13Ghz computer. The embedding quickly becomes very com-
putationally expensive with large prototype graph sets. Embedding biometric graphs
using a very large prototype set and a combination of computationally efficient algo-
rithms and/or computers with far higher processing power offers a potential rewarding
area for further research.
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