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1. What is Surface Diffusion Flow?

Surface Diffusion Flow describes a particular kind of surface evolution over time.
The work in this project pertained to surfaces in R2, which are merely curves; thus,
we shall refer to Surface Diffusion Flow as Curve Diffusion Flow, or CDF.

Consider a closed curve evolving over time. That is, we have some curve γ(u, t) :
S1 × R → R2, that will evolve smoothly under the time component t. The formal
definition of CDF describes when an evolving curve is evolving under CDF.

Definition 1.1. Let γ(u, t) : S1 × R → R2 be a series of curves. We say γ evolves
under CDF if:

∂γ

∂t
(u, t) = −κss(u, t)ν(u, t),

where κss is the second derivative of curvature with respect to arc length, and ν is the
unit normal to γ.

Another way to think about CDF is to ask the question, given a curve γ in R2, how
will γ evolve under CDF? That is, define the curves parametrised by time to be those
which will satisfy the CDF condition. This view point will be of importance to us in
the next section, but ultimately it is a complicated question to ask.

To see the complications of the CDF, merely consider the ellipse paramatrised by
(2 cos(u), sin(u)). Although this is a relatively simple curve, one can compute the
curvature and the arc-length derivatives of curvature (κss) to see that this flow is
actually quite complex.

The graph of κss(u) for u ∈ [0, 2π] is pictured below.



Thus, if we tried to flow this particular ellipse under CDF, remembering that we
are applying a velocity of κss in the normal direction to each point, the first time step
would be represented by the following.

It can be seen that it is quickly becoming hard to picture what will happen to
this curve as the curvature at each point will change quite rapidly; approximating the
following timesteps will be difficult.

So if this flow is unpredictable and seemingly unintuative, why would we want to
study it? The physical motivation for this flow, is seemingly endless.

Surface Diffusion Flow was first described by W. W. Mullins in his 1956 paper “The
Theory of Thermal Grooving”. In this paper, it is shown that SDF is a reasonal
approximation for the way surface grooves develop at the grain boundaries of heated
crystal structures. Another common example is the way SDF is related to the Cahn-
Hilliard equation, which describes phase seperation and coarsening in the quenching
process of binary alloys.

CDF has also been used to study more classical problems. Any problem in which
there is some notion of volume being preserved, whilst surface area is being minimised,



can be applied to CDF. However, the motivations do carry much further than phys-
ical problems. Application into other areas of mathematics id beneficial, although
unexplored in this project.

To try to understand CDF, we want to understand the second viewpoint mentioned
above. That is, can we predict what will happen to a curve once CDF is applied to
it. To try and get a picture of these, we look for what are called self-similar solutions,
which leads us onto the next section.

2. What are self-similar solutions?

A self-similar solution to the CDF is a solution to the CDF that maintains the
same shape as it evolves. That is, the curve under the flow will simply evolve by any
combination of scaling, rotating or translating.

The main focus of this project was of self-similar solutions of the scaling variety.
The mathematical defintion is as follows,

Definition 2.1. Let γ(u, t) : S1 × R → R2 be a solution to the CDF. We say that γ
is a self-similar solution if:

γ(u, t) = f(t)γ0(u)

for some function f(t) and initial curve γ0(u) .

The current knowledge of any kind of self-similar solutions to the CDF is very
limited. In the 1996 paper “Curves and surfaces of least total curvature and forth-
order flows” by A. Polden, it is shown that any curve with zero winding number will
either develop a singularity or shrink to a point in finite time. The 1998 paper, “On the
Surface Diffusion Flow” by J. Escher et al, numerically estimates the flow of a figure-
8 shrinking to a point. Amazingly the numerical estimation looks like a self-similar
curve, however no explicit parametrisation was proposed.

A simple and somewhat trivial example of a self-similar solution to the CDF is the
circle.

Proposition 2.2. Let γ(u, t) be defined by:

γ(u, t) = (A cos(u), A sin(u)).

Then γ(u, t) is a self-similar solution to the CDF.

Proof. To see that γ(u, t) is self-similar is trivial, since it is unchanging with time, we
can simply consider:

γ(u, t) = f(t)γ0(u)

with f(t) = A, a constant function, and γ0 = (cos(u), sin(u).



To see that γ(u, t) evolves under CDF, we simply note that it satisfies the CDF
equation, as:

∂γ

∂t
(u, t) =

∂

∂t
(A cos(u), A sin(u)) = 0.

and

κ(u, t) =
1

A
=⇒ κss(u, t) = 0.

Hence, the CDF equation is trivially satisfied, and the circle is a self-similar solution.
�

Using this method to calculate whether or not a curve is evolving self-similarly relies
on the fact that we have a parametrisation of the curve evolving under CDF. That is,
we have an explicit formula of γ(u, t). As was mentioned in Section 1, we often think
of the problem as, given a curve γ(u), how will it evolve under CDF. We now extend
this question to, given a curve γ(u), can we check whether under CDF it will evolve
self-similarly? Using the next quick lemma, we can.

Lemma 2.3. Let γ(u) : S1 → R2 be a curve. Then γ(u) is a self-similar solution to
the CDF if and only if:

κss(u) = K〈γ(u), ν(u)〉
for all u ∈ S1.

Proof. To see this is true, let γ(u, t) be a curve evolving under CDF such that:

γ(u, t) = f(t)γ0(u).

We therefore have,
∂

∂t
γ(u, t) = f ′(t)γ0(u).

Since γ(u) evolves under CDF, it satisfies the CDF equation, that is:

∂

∂t
γ(u, t) = −κss(u, t)ν(u, t).

Thus we have:

f ′(t)γ0(u) = −κss(u, t)ν(u, t)

=⇒ 〈f ′(t)γ0(u), ν(u, t)〉 = 〈−κssν(u, t), ν(u, t)〉
=⇒ f ′(t)〈γ0(u), ν(u, t)〉 = −κss〈ν(u, t), ν(u, t)〉 = −κss(u, t)

Since we do not want this as a function of t, we let t0 be such that:

γ(u, t0) = γ0(u) ⇐⇒ f(t0) = 1.

We finally have:
f ′(t0)〈γ0(u), νγ0(u)〉 = −(κγ0)ss(u).



�

Example 2.4. We can now use the above Lemma to check the already established
self-similarity of a circle.

Consider a circle of any radius, that is γ0(u) = (A cos(u), A sin(u)). Then we have:

κ(u) =
1

A
=⇒ κss(u) = 0.

Thus,
κss(u) = K〈γ(u), ν(u)〉

is trivially satisfied with K = 0.

Using the above result comes the next result. This result is a non-trivial, analytic
self-similar solution to the CDF, previously unknown.

Proposition 2.5. Let γ(u) : S1 → R2 defined by

γ(u) =

(
cos(u)

1 + sin2(u)
,

sin(2u)

2 + 2 sin2(u)

)
.

Then γ(u) will evolve self-similarly under the CDF.

Proof. Given the definition of γ(u), we calculate its curvature to be:

κ(u) =
3 cos(u)

(1 + sin2(u))
1
2

.

We can thus find the arc-lenfth derivatives to be:

κs(u) =
−6 sin(u)

1 + sin2(u)
,

κss(u) =
−6 cos(u)(1− sin2(u))

(1 + sin2(u))
3
2

.

Furthermore, the unit normal can be found to be:

ν(u) =

(
1− 3 sin2(u)

(1 + sin2(u))
3
2

,
sin(u)(2 + cos2(u))

(1 + sin2(u))
3
2

)
.

Taking the inner product with γ(u) yields:

〈γ(u), ν(u)〉 =
cos(u)(1− sin2(u))

(1 + sin2(u))
3
2

=
−1

6
κss(u).

Thus, by Lemma 2.3, γ(u) is a self-similar solution to the CDF. �



Following the previous proposition, as we now know that the previously defined
curve will flow self-similarly under CDF, we can find an explicit solution to the flow
with this curve.

Corollary 2.6. The curve γ(u) defined in Proposition 2.5 will evolve under the CDF
by:

σ(u, t) = (12− 12t)
1
2γ(u)

for t ∈ [0, 1].

Proof. Given that:

〈γ, ν〉 =
−1

6
(κγ))ss,

∂

∂t
σ = (κσ)ssν,

and we can write σ(u, t) as:

σ(u, t) = f(t)γ(u);

we need to find f(t) such that:

f ′(t)γ(u) = (κσ)ssν.

We begin by calculating:

κσ =
|σ′ × σ′′|
|σ′|3

=
|f(t)γ′(u)× f(t)γ′′(u)|

f(t)γ′(u)|3

=
|f(t)|2

|f(t)|3
γ′ × γ′′|
|γ′|3

=
1

f(t)
κγ.

Thus we have:

(κσ)ss =
1

f(t)
(κγ)ss.



Now using the above information, we can find f(t) as follows:

f ′(t)γ(u) = (κσ)ssν

=⇒ f ′(t)〈γ, ν〉 = (κσ)ss

=⇒ f ′(t)〈γ, ν〉 =
1

f(t)
(κγ)ss

=⇒ f ′(t)f(t) =
(κγ)ss
〈γ, ν〉

= −6

Thus, we have:
d

dt

(
1

2
(f(t))2

)
= −6.

We integrate to find:

f(t)2 = −12t+ f(0)2 =⇒ f(t) =
√
f(0)2 − 12t.

Furthermore, we have:

f(t) = 0 ⇐⇒ t =
1

12
f(0)2.

Which gives us our result:

σ(u, t) = (f(0)2 − 12t)
1
2γ(u) for t ∈ [0,

1

12
f(0)2],

where we simply take f(0)2 = 12.
�

3. Further Work

Where do we go from here? Ultimately we would like to find more self-similar
solutions to the CDF. Generating these is tricky, however there are some techniques
that can be combined with clever tactics to help us get there.

Progress at the moment has come to generating an ODE by use of Lemma 2.3 and
some guesswork as to what other solutions may look like. One can easily obtain an
ODE in the most general sense, that would find γ1(u) and γ2(u) such that (γ1, γ2) is a
self-similar solution to the CDF. However, finding the functions which solve this ODE
can be difficult. Related is to look at the ODE generated by trying to find a solution
which is a graph over the circle, that is, a curve of the form (r(u) cos(u), r(u) sin(u));
this approach seems promising, but still needs some refinement. Perhaps some gener-
alisation of this with controlled parameters will allow us to find some solutions.

The purpose in doing this is to find families of self-similar solutions. This will give us
some idea of what kind of self-similar solutions exist. Similar evolution equations (see



Curve Shortening Flow) have been fully classified, that is, every kind of self-similar
solution has been identified and formulas for families of self-similar solutions exist.
Some heavy analysis could lead to a similar result for CDF.
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