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Abstract

The fundamental groupoid can be viewed as a generalization of the funda-
mental group. In this report, we take a different approach by considering the
fundamental groupoid as a category. After introducing the basic concept of
category theory, we will construct the fundamental groupoid and generalize a
more general version of Van Kampen’s theorem. The final result is that we can
calculate the fundamental group of a circle using the improved Van Kampen’s
theorem.

1 Preliminaries
Definiton 1.1. A category C consists of :

1. a class Ob(C), called the objects of C,

2. for each x, y ∈ Ob(C), a set C(x, y) is called the set of morphism in C from x to
y,

3. a binary operation, called composition. For any a, b, c ∈ Ob(C), if f ∈ C(a, b), g ∈
C(b, c), then the composition gf ∈ C(a, c).

The composition is associative and the identity morphism 1x exists for every object x
in C.

Similar to other mathematical object, there is a notion of a category contained in
a bigger category. Let C,D be categories. We say D is a subcategory of C if



1. each object of D is an object of C,

2. for each x, y ∈ Ob(D), D(x, y) ⊆ C(x, y).

3. the composition of morphism D is the same as for C, and

4. the identity morphism behaves the same.

A subcategory D is called full if D(x, y) = C(x, y) for all x, y ∈ Ob(D).

Examples.

• Set as category with sets as objects and functions as morphisms.

• Top with sets as object and continuous maps as morphisms.

• Grp with groups as object and group homomorphisms as morphisms.

• Grpd with groupoids as object and functors between groupoid as morphisms.

Not that we have a class as objects in these examples but we can also have a set as
object. For example : a group is a category with only one object and all the morphisms
are invertible. And a groupoid is exactly the same except it could have more than one
object.

The last example tells us more about category. Since a groupoid is a category, it
shows us that we can construct a category using categories as object. The functors is
like a map between categories.

Definiton 1.2. Let C,D be categories. A functor f : C → D maps each object
x ∈ C to an object fx in D. It also maps each morphism a ∈ C(x, y) to a morphism
fa ∈ D(fx, fy). We then call fa the morphism induced by a. The functor F must
preserve:

• Composition. If f : x→ y and g : y → z, then F (gf) = F (g)F (f).

• Identity morphism. For all x ∈ Ob(C), F (1x) = 1Fx.



From the definition, we can show that any functor f : C → D preserve isomor-
phism. If a morphism a is an inverse of b in category C (i.e: ab = 1, ba = 1), then by
the above definition fafb = 1 and fbfa = 1. This shows that a topological invariant
is no more than a functor from Top to other category. The fundamental groupoid is
then a functor π : Top→ Grpd.

The last thing we need to know about category theory is a special commutative dia-
gram, called pushout.

Definiton 1.3. Let C be a category. A diagram

x0

x2

x1
i1

i2

x
j2

j1

where x0, x1, x2, x are objects and i1, i2, j1, j2 are morphism, is a pushout if

1. it commutates.

2. for every object y ∈ C and a pair of morphism j′1 : x1 → y and j′2 : x2 → y such
that the following outer diagram commutes,

x0

x2

x1
i1

i2

x
j2

j1

y
j′2

j′1

u



that is j′1i1 = j′2i2. Then there exist a unique morphism u : X → Y such that the
whole diagram.

The next proposition roughly states that a composition of pushout is a pushout.

Proposition 1.4. Suppose we are given a commutative diagram in C where the first
and second square is a pushout.

C

D

E

F

G

H

h

g

f k

i

n

m

Then the outer square is a pushout.

Proof. Suppose we are given an arbitrary object K and morphisms p : G → K,
q : D → K such that the following diagram commutates.

C

D

G

k

f

hi

q

p

Since it satisfies the pushout properties of the first square, there is a unique mor-
phism a : F → K such that ag = q, ak = pi. By the pushout property of second
square, there is a unique morphism b : H → K such that p = bm, a = bn.



C

D

E

F

G

H

K

h

g

f

i

n

k m p

q
a

b

It follows that b = pm, q = bng, thus the morphism b : H → K is the required
morphism for the outer square.

(Uniqueness) Suppose b′ : H → K is another morphism such that b′m = p, b′ng = q′.
Then b′n is another morphism from F to K and by the uniqueness of morphism a,
a = bn. Similarly, b′ = b by the uniqueness of morphism b.

To avoid confusion, we used categories as object and functors as morphisms in the
above theorem.

2 Fundamental Groupoid
The fundamental groupoid is a close relative of the fundamental group. While in the
latter one studies the loops in a topological space, the fundamental groupoid focuses
on the paths. More precisely, it is defined to be the collection of equivalence class of
paths in a space. However, we first need an equivalence relation to classify the paths.

2.1 Homotopy of paths

For a path a from x to x′ in topological space X, it is defined to be a map f : [0, r]→ X
such that f(0) = x and f(r) = x′. We say that the real number r is the length of a
path.



Definiton 2.1. Let a,b be paths in X of length r with same endpoints. A homotopy
of length q is defined to be a map F : [0, r]× [0, q]→ X such that for s ∈ [0, r].

F (s, 0) = a(s) F (s, 1) = b(s).

The above definitions might look different to the one using interval [0, 1] but the
more general form turns out to be convenient in defining the composition of paths.
Furthermore, there is a continuous surjection from [0, 1] → [0, q]. So it is sufficient to
only consider the homotopies of length 1. Now it can be shown that:

• Homotopy of length 1 is an equivalence relation of paths with the same length.

• Homotopy behaves well with respect to composition.

How about the paths with different lengths but same endpoints? To extend our
classification, we need to know how two paths can add or equivalently, be composed.

Suppose a,b are two paths with length p, q respectively, the addition of path is
defined by the map a+ b : [0, p+ q]→ X, such that

(a+ b)(s) =

{
a(s) if 0 ≤ s ≤ p
b(s) if p < s ≤ p+ q

Now we can complete the classification of paths.

Definiton 2.2. Given two paths a, b that have different lengths. We say a, b are
equivalent if there exist constant paths r, s, such that r+a, s+ b have the same length
and are homotopic.

This definition gives an equivalence relation on the path in X.

2.2 Category PX, πX

We start our construction by defining a new category PX. It has the element of X as
object and the paths in X as morphism. Composition of paths is the path addition
that we defined above. We can easily verify that the identity and associative axioms
hold.

The fundamental groupoid is obtained by applying the equivalence relation 2.2 on
the morphisms of category PX.



Theorem 2.3. The category πX whose objects are the set of points X and whose
morphisms are path classes in X is a groupoid. This groupoid is called the fundamental
groupoid of X.

At first glance, the fundamental groupoid is much bigger than the fundamental
group. But as a trade off, it is harder to compute. In the case of circle S1, the path
classes starting and ending at each pairs of points are isomorphic to Z, and there are
infinitely many pairs of points.

To avoid the lengthy computation, we will investigate the subcategory of funda-
mental groupoid. But we should first give some example of fundamental groupoid of
simple spaces.

Examples.

• If the path-components of a space X consists only one point, then πX(x, y) = φ
if x 6= y. Otherwise, it has constant path. Such a groupoid is called a discrete
groupoid.

• If the space X is convex, then all paths with the same end points are equivalent.
Thus πX(x, y) has exactly one element for all x, y in X. A groupoid with this
property is called 1-connected or a tree groupoid.

Among those examples, the 1-connected groupoid with two objects 0, 1 is important.
It will be used to describe a more general definition of homotopy (functor). And is an
important tool of our final example. We shall denote this groupoid as I and its unique
morphism from 0 to 1 by ı.

2.3 The Fundamental subgroupoid πXA

Given a subset A of X, the fundamental subgroupoid πXA is defined to be the full
subcategory of πX whose objects are the set A. Equivalently, we can think about it
as considering only the path classes in X whose has endpoints are in A.

The following figure in which the shaded region represents A, illustrated the idea:



q
p

Note that if the subset A of X consists of a single point p, then all the paths in
πX{p} become loops. When we apply the equivalence relation on those loops, we
obtain the fundamental group π(X, p). Thus, the fundamental subgroupoid πX{p} is
the fundamental group π(X, p).

3 Homotopy
As mentioned previously, the fundamental groupoid is hard to calculate, and an ap-
propriate ′size′ of subset A has yet to be determined. In this section, we introduce the
homotopy of functors which enable us to define an equivalent but simpler fundamental
subgroupoid. Then we can define what it means for a subgroupoid to be a ‘deformation
retract’ and determine the appropriate properties for the subset A.

Definiton 3.1. Let C and D be categories. A homotopy of functors from C to D is
a product functor F : C × I → D. The initial functor of F is f = F ( , 0) and the final
functor is g = F ( , 1), where I is the 1-connected groupoid with only two objects. We
then write F : f ' g and say that f and g and homotopic.

Note: We write an object of D when both arguments of F are objects and a morphism
of D when both arguments of F are morphisms.

The groupoid I has a unique morphism ı : 0→ 1. This allows us to complete charac-
terize the homotopy F with initial and final functors f, g and an invertible morphism
θx of F . Here θx = F (x, ı) where x is the identity morphism 1x in C.

Take a morphism a : x → y in C, then we have ga(gx) = gy. However, we can
show that:

(ga) = (θy)(fa)(θx−1). (1)



Proof.

(θy)(fa)(θx−1)(gx) = F (y, ı)F (a, 0)F (x, ı−1)F (x, 1)

= F (yax(x), ı0ı−1(1))

= F (y, 1)

= gy.

With the invertibility of θx, we showed that g is determined by and f and θx. Thus
for any homotopy of functors F and initial functor f , the functor g is defined by (1).
We call θ a homotopy function from f to g, and write θ : f ' g.

As a categorical analogue of homotopy of spaces, we inherit most of the latter’s proper-
ties. They can be demonstrated using the homotopy function θ that we just introduced.

• Homotopy of functors is an equivalence relation on functors C → D.

• Let f : C → D, g : D → ε, h : ε → F be functors and suppose g ' g′. Then
hgf ' hg′f .

On the other hand, the notation of homotopy inverse and homotopy equivalent play a
bigger role here. Let C,D be categories and f : C → D, g : D → C be functors. If
fg ' 1C and gf ' 1D, then we said f is a homotopy inverse of g. When an inverse
exists, we call f a homotopy equivalence, and the categories C,D are said to be ho-
motopy equivalent. We denote this by C ' D.

Similarly, we can ask for an addition property of homotopy of functors that is relative
to some subcategory D. On the subcategory D, the homotopy F will be constant or
equivalently the homotopy function θx is an identity morphism. Thus, the initial and
final functor agree on D.

Finally, we have a definition of deformation retract and a theorem about it. We can
replace a category with a simpler but homotopically equivalent one. This is frequently
useful in calculating the fundamental groupoid as πX is complicated after all.

Definiton 3.2. Given that D is a subcategory of C, a functor r : C → D is called a
deformation retraction if ir ' 1C relD, where i : D → C is the inclusion functor.



Note that a deformation retraction is automatically a retraction since ri = r1C |D = 1D,
and the categories C and D are homotopy equivalent. But to describe a deformation
retract, we want each object of C to be isomorphic to an object of its subcategory D.
We then say D is representative in C.

Theorem 3.3. A subcategory D of C is a deformation retract of C if and only if D
is a full representative subcategory.

This theorem shows us the appropriate size of the subset A. As πXA itself is a full
subcategory, all we need is A to be representative in X. It also turns out that a de-
formation retract of a pushout is also a pushout. However, retraction does not make
sense in the category of commutative squares so we need a further definition.

3.1 Category C�

Given a category C, we define a category of commutative squares C�, in which the
objects are commutative squares of C. Let S1,S2 be two commutative squares. A mor-
phism s : S1 → S2 is a collection of maps in C which preserves the square’s structure
and such that the following cubical diagram commutes.

S1b S2b

S1a S2a

S1d S2d

S1c S2c

It can be verified that this is a category. Now we have the notion of retraction of
commutative squares and we can state the next theorem.



Theorem 3.4. Let S1, S2 be commutative squares in C such that S2 is a pushout. If
there is a retraction S2 → S1, then S is a push out.

The proof will be refer to Brown’s book, page 238.

4 Van Kampen’s theorem
Van Kampen’s theorem is a crucial tool to calculate complicated fundamental groups.
It states that the fundamental group π(X, p) can be expressed in terms of the fun-
damental group of its open cover if certain properties hold. Our aim is to state and
prove a more general version of this theorem, using the techniques that we developed
so far. We will use this theorem to compute the fundamental group of a circle which
the original Van Kampen’s theorem does not allow.

Theorem 4.1. Let X0, X1, X2 be subspaces of a topological space X such that X =
X1 ∪ X2 and X0 = X1 ∩ X2. If A is representative in X0, X1, X2, then the following
diagram is a push out.

πX0A

πX2A

πX1A

πXA

i1

u2

i2 u1

As the fundamental group is a special case of the fundamental groupoid, it is not
surprising that Van Kampen’s theorem can be stated in terms of subgroupoid and
pushout. However, there is some essential difference. Even though it is usual to as-
sume X to be path-connected, we don’t require its subspaces to be path-connected.
Instead, we need the set A to be representative in each of its subspaces. We also as-
sume A is a subspace of X as any point outside X makes no difference to πXA.

The proof of 4.1 is constructed in two parts. We first prove the case A = X, then
the general case using theorem 3.4. The first part of the proof is lengthy and totally
topological. For the reader who is interested in it, please see Brown’s book, page 242.

Proof. The general case - We start by proving the commutative square πXA is a re-
traction of πX then apply theorem 3.4. First note that each πXiA is a full subcategory
of πXi (i = 0, 1, 2, ). This leaves us to prove that they are representative.



Since A is representative in each Xi, we can always choose a path class from some
point in A to each point in Xi. Because every path class has a inverse (i.e: we have a
groupoid), each object of πX is isomorphic to an object in πX. By 3.3, each πXiA is
a deformation retract and thus also a retract.

Suppose now that we can restrict A to a single point, then the last theorem is exactly
the original Van Kampen’s theorem. But to compute the fundamental group of a circle,
we need another pushout.

Theorem 4.2. Let C,D be categories and f : C → D be a functor such that it is
injective in objects. Then for any full representative subcategory C ′ of C, we obtain a
push out.

C

D

C ′

D′

r

r′

f f ′

f ′ is the restriction of f and r, r′ are deformation retraction.

We will first prove the above square is commutative. The proof of pushout will be
will be referred to brown’s book.

Proof. We first construct D′ as a full subcategory of D with:

Ob(D′) = f(Ob(C ′)) ∪ (Ob(D) \ f(Ob(C)).

For every object d ∈ Ob(D)\Ob(D′), d = f(c) for some c ∈ Ob(C). Since f is injective
and C ′ is representative in C, the object d is isomorphic to some object f(ob(c′)) in D.
Therefore, D′ is representative in D and by theorem 3.3, there exists a deformation
retract r′ : D → D′.

Thus we have the following commutative diagram:



C ′

D′

C

D

i

j

f ′ f

where i, j are inclusion. The morphism r : C → C ′ is a deformation retract and
θ : ir ' 1 rel C ′ is the induced homotopy function.

Similarly, we try to construct a homotopy function ϕ : jr′ ' 1 rel D′. We set ϕy = fθx
if y = fx and otherwise ϕy = 1y. Thus ϕy is invertible and ϕf = fθ.

Take a morphism a ∈ C(x, x′), observe that:

jf ′r(a) = fir(a)

= f((θx′)−1a(θx))

= (fθx′)−1fa(fθx)

= (ϕfx′)−1fa(ϕfx)

= jr′f(a).

Note that we are actually working on subcategory so we can drop the inclusion j from
both sides. Therefore f ′r = r′f and the square commutes.

The next theorem sums up what we developed so far and allows us to calculate the
fundamental group of a circle.

Theorem 4.3. Let A1 be a subset of A that is representative in X1. Then we have a
pushout diagram.

πX0A

πX2A

πX1A

πXA

πX1A1

πXA1

i1

u2

i2 u1

r

r′

u′1



Note: As discussed before, we assume A to be a subset of X.

Proof. The proof is almost immediate. By theorem 4.1 and 4.2, the left square and right
square are pushout respectively. Since a composition of pushout is again a pushout,
the outer square is a pushout.

Without the last theorem, the calculation of the fundamental group of a circle is
lengthy and complicated. The final example simplifies the lengthy proof to a simple
application of 4.3.

Example. The fundamental group of a circle is isomorphic to Z.

Consider a circle S1 in C. Let X1 = S1 \ {i}, X2 = S1 \ {−i} and X0 = X1 ∩ X2 =
S1 \ {i,−i}. We choose the subset A = {−1, 1} such that it is representative in Xi

(i = 0, 1, 2, ). A1 = {1} which is representative in X1.

X0A X0A1 X2A

−1 1 1 −1 1

By 4.3, the left square is a push out but we can simplify it.

πX0A

πX2A

πX1A1

πXA1

{0, 1}

I

0

π(S1, 1)g



Observe that πX1A1 is the fundamental group of a simply-connected space, thus it
is isomorphic to the trivial group(oid) 0. πX0A has a point on both simply-connected
path-components. Therefore it is isomorphic to discrete groupoid {0, 1}.
πX2A has two objects {i},{-i} and has only one path class between them. It is then
isomorphic to groupoid I.

Consider the right pushout and a group Z. If there is a morphism f : I → Z, then
there is a unique morphism h : π(S1, 1) → Z such that hg = f . It was shown in
Brown’s paper that h is indeed an isomorphism. Therefore, h : π(S1, 1) ' Z

5 Conclusion
The aim of this report is to give an introduction to fundamental groupoid. We first
study category theory for necessary knowledge to construct the fundamental groupoid.
However, it is too hard to calculate so we replace it with a simpler but equivalent sub-
groupoid. At last, the improved Van Kampen’s theorem tells us that the fundamental
groupoid more versatile than the fundamental group.

I would like to thank my supervisor Dr. Paul McCann for his patient guidance, and
encouragement of looking deeply into fundamental groupoid. I would also like to thank
AMSI for giving me the experience of research.
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