

The Lie-Poisson Structure of the Symmetry Reduced Regularised n-Body Problem

Somasuntharam Arunasalam and Diana Nguyen Supervisor: A/Prof. Holger Dullin The University of Sydney

February 2014

1 Introduction

The *n*-body problem has the Galilean symmetry group which leads to the classical 9 integrals of linear momentum, centre of mass, and angular momentum. Symplectic reduction of this symmetry leads to a symmetry reduced system with 3n-5 degrees of freedom, see, e.g. [1]. An alternative approach to reduction that avoids problems with singular reduction uses invariants of the symmetry group action. Singular reduction does occur in the *n*-body problem because the orbit of the symmetry group drops in dimension for collinear configurations. Using quadratic invariants leads to a Lie-Poisson structure isomorphic fo $\mathfrak{sp}(2n-2)$, as was shown using different basis of invariant in [2] and [3].

One motivation for this approach is the possibility to derive a structure preserving geometric integrator for the symmetry reduced 3-body problem, as derived in [3]. However, numerical integration of many body problems needs to be able to deal with

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia

binary near-collisions. The classical regularisation by squaring in the complex plane found by Levi-Civita [4] has a beautiful spatial analogue that can be formulated using quaternions [5]. The KS-regularisation has been used by Heggie to simultaneously regularise binary collision in the *n*-body problem [6]. Recently the symmetry reduction of the regularised 3-body problem has been revisited in [7], extending the classical work of Lemaitre . In the present work we perform the symmetry reduction using quadratic invariants, thus repeating [3] for the regularised problem. Our main result is that the symmetry reduced regularised 3-body problem has a Lie-Poisson structure of the Lie-algebra $\mathfrak{su}(3, 3)$.

The paper is organised as follows. In the next section we introduce our notation of quaternions and Heggies regularised Hamiltonian. We then treat the cases n = 2 (Kepler), n = 3 and $n \ge 4$ in turns. For the Kepler problem we show how to extend the SO(3) group action to a subgroup of SO(4). Treating 3 particles amounts to repeat this construction for 3 difference vectors, and we show that for a suitable chosen group action the space of quadratic invariants is closed and the Hamiltonian can be written in terms of the quadratic invariants. The corresponding Lie-Poisson structure is $\mathfrak{su}(3,3)$. In the final section we briefly comment on how to repeat this construction for an arbitrary number of particles.

2 Simultaneous regularisation of binary collisions

Let the positions of the particles be denoted by $\mathbf{q}_i \in \mathbb{R}^3$, and the conjugate momenta by $\mathbf{p}_i \in \mathbb{R}^3$, i = 1, ..., n. The translational symmetry is reduced by forming difference vectors $\mathbf{q}_{ij} = \mathbf{q}_i - \mathbf{q}_j$ and $\mathbf{p}_{ij} = \mathbf{p}_i - \mathbf{p}_j$. We follow [8] in using quaternions for the regularisation. The analogue of Levi-Civita's squaring map can then be written as

$$\boldsymbol{q} = \boldsymbol{Q} * \boldsymbol{Q}^{\star}, \tag{2.1}$$

 Email:
 enquiries@amsi.org.au

 Phone:
 +61 3 8344 1777

 Fax:
 +61 3 9349 4106

 Web:
 www.amsi.org.au

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia where $\mathbf{Q} = Q_0 + iQ_1 + jQ_2 + kQ_3$ and the superscript * flips the sign of the kcomponent, $\mathbf{Q}^* = Q_0 + iQ_1 + jQ_2 - kQ_3$, see [8]. By construction the quaternion $\mathbf{Q} * \mathbf{Q}^*$ has vanishing k-component and can thus be identified with the 3-dimensional
vector \mathbf{q} .

The mapping from 4-dimensional momenta \boldsymbol{P} to 3-dimensional momenta \boldsymbol{p} is given by

$$p = \frac{1}{2||Q||^2} Q * P^* = \frac{1}{2} P^* * \bar{Q}^{-1}$$
 (2.2)

where the overbar denotes quaternionic conjugation. Note that in general the kcomponent of the right hand side is non-zero. One could think of the map to p to
be a projection onto the first three components. However, it turns out to be better to
impose that the last component vanishes. This condition can be written as

$$\boldsymbol{Q}^{T} K \boldsymbol{P} = 0 \quad \text{where} \quad K = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$
(2.3)

Here Q and P are interpreted as ordinary 4-dimensional vectors; multiplication of quaternions is denoted by * as above. This is the famous bi-linear relation [5]. Together (2.1) and (2.2) define a projection π from $(Q, P) \in T^* \mathbb{R}^4$ to $(q, p) \in T^* \mathbb{R}^3$. Only when restricting to the subspace defined by the bi-linear relation (2.3) does the map π respect the symplectic structures in the sense that

$$\{f,g\}_3 \circ \pi = \{f \circ \pi, g \circ \pi\}_4.$$

Here the two Poisson brackets $\{,\}_3$ and $\{,\}_4$ are coming from the two standard symplectic structures $d\boldsymbol{q} \wedge d\boldsymbol{p}$ and $d\boldsymbol{Q} \wedge d\boldsymbol{P}$, respectively.

Using this transformation on the Hamiltonian of the n-body problem written in terms

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia

of difference vectors and scaling time gives the regularised Hamiltonian $[6]^{-1}$

$$H = \frac{1}{8} \left(\frac{R_{12}R_{31}}{\mu_{23}} \boldsymbol{P}_{23}^{T} \boldsymbol{P}_{23} + \frac{R_{12}R_{23}}{\mu_{31}} \boldsymbol{P}_{31}^{T} \boldsymbol{P}_{31} + \frac{R_{23}R_{31}}{\mu_{12}} \boldsymbol{P}_{12}^{T} \boldsymbol{P}_{12} \right)$$

$$- \frac{1}{4} \left(\frac{R_{23}}{m_{1}} (\boldsymbol{Q}_{31} * \boldsymbol{P}_{31}^{\star})^{T} (\boldsymbol{Q}_{12} * \boldsymbol{P}_{12}^{\star}) + \frac{R_{31}}{m_{2}} (\boldsymbol{Q}_{12} * \boldsymbol{P}_{12}^{\star})^{T} (\boldsymbol{Q}_{23} * \boldsymbol{P}_{23}^{\star}) + \frac{R_{12}}{m_{3}} (\boldsymbol{Q}_{23} \boldsymbol{P}_{23}^{\star})^{T} * (\boldsymbol{Q}_{31} \boldsymbol{P}_{31}^{\star})^{T} (\boldsymbol{Q}_{31} * \boldsymbol{P}_{31}^{\star})^{T} (\boldsymbol{Q}_{31} * \boldsymbol{P}_{31}^{\star}) + \frac{R_{31}}{m_{2}} (\boldsymbol{Q}_{32} * \boldsymbol{P}_{31}^{\star})^{T} (\boldsymbol{Q}_{23} * \boldsymbol{P}_{23}^{\star}) + \frac{R_{12}}{m_{3}} (\boldsymbol{Q}_{23} \boldsymbol{P}_{23}^{\star})^{T} * (\boldsymbol{Q}_{31} \boldsymbol{P}_{31}^{\star})^{T} (\boldsymbol{Q}_{31} * \boldsymbol{P}_{31}^{\star})^{T} (\boldsymbol{Q}_{31} * \boldsymbol{P}_{31}^{\star}) \right)$$

where $R_{ij} = \mathbf{Q}_{ij}^T \mathbf{Q}_{ij} = \left\| \mathbf{q}_{ij} \right\|$ and $\mu_{ij} = \frac{m_i m_j}{m_i + m_j}$ is the reduced mass of particles *i* and *j*.

3 The Kepler Problem n = 2

For n = 2 there is only a single difference vector $\mathbf{q}_{12} = \mathbf{q}_1 - \mathbf{q}_2$, similarly for \mathbf{p} . For ease of notation, in this section we are writing \mathbf{q} for \mathbf{q}_{12} , similarly for \mathbf{p} , and the corresponding quaternions \mathbf{Q} and \mathbf{P} .

The SO(3) symmetry acting on pairs of difference vectors in $\mathbb{R}^3 \times \mathbb{R}^3$ is the diagonal action $\Phi_R : (\boldsymbol{q}, \boldsymbol{p}) \mapsto (R\boldsymbol{q}, R\boldsymbol{p})$ for $R \in SO(3)$. This is a symplectic map whose momentum map is the cross product $\boldsymbol{q} \times \boldsymbol{p}$. Which linear symplectic actions Ψ_S of (subgroups of) SO(4) acting on $\mathbb{R}^4 \times \mathbb{R}^4$ project to Φ_R under π ? Lemma 3.1. The diagonal action $\Psi_S : (\boldsymbol{Q}, \boldsymbol{P}) \mapsto (S\boldsymbol{Q}, S\boldsymbol{P})$ for $S \in G < SO(4)$ with

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia

¹It should be noted that adding additional degrees of freedom to a Hamiltonian is by no means unique. Away from collision the dynamics of the inflated systems needs to project back to the original dynamics.

 $G \cong SU(2) \times SO(2)$ projects to the action of Φ_R under π , in other words, the diagram

$$T^* \mathbb{R}^3 \xleftarrow{\pi} T^* \mathbb{R}^4$$

$$\Phi_R \downarrow \qquad \Psi_S \downarrow$$

$$T^* \mathbb{R}^3 \xleftarrow{\pi} T^* \mathbb{R}^4$$

commutes.

Proof. Let the rotation $R \in SO(3)$ be given by $R = \exp At$ for some $A \in \text{Skew}(3)$. We assume that G is a topologically closed subgroup of GL(4) so that we can write $S = \exp Bt$ for $B \in \text{Skew}(4)$. The diagram states that $\Phi_R \circ \pi = \pi \circ \Psi_S$. Linearising at the identity, i.e. differentiating with respect to t and setting t = 0, and using that Φ_S leaves the norm of quaternions unchanged gives

$$A(\boldsymbol{Q}*\boldsymbol{P}^{\star}) = (B\boldsymbol{Q})*\boldsymbol{P}^{\star} + \boldsymbol{Q}*(B\boldsymbol{P})^{\star}$$

from the momenta (2.2), and the same equation with P replaced by Q from the positions (2.1). For arbitrary given $A = \hat{L}$ where $L = (L_x, L_y, L_z)^t$ and the hatmap from \mathbb{R}^3 to Skew(3), the general solution can be written as $B = \frac{1}{2} \operatorname{Isoc}(\hat{L}) + \tau K$, where $\operatorname{Isoc}(\hat{L}) = \begin{pmatrix} \hat{L} & -L \\ L^t & 0 \end{pmatrix}$. The subgroup G < SO(4) contains the subgroup of isoclinic rotations $\exp(\operatorname{Isoc}(A)) = \cos \omega I_4 + \omega^{-1} \sin \omega \operatorname{Isoc}(A)$ where $\omega^2 = \frac{1}{2} \operatorname{Tr} AA^t$. They form a subgroup since the corresponding generators $\operatorname{Isoc}(A)$ form an algebra with $[\operatorname{Isoc}(\hat{x}), \operatorname{Isoc}(\hat{y})] = 2 \operatorname{Isoc}([\hat{x}, \hat{y}]) = 2 \operatorname{Isoc}(\widehat{x \times y})$. The corresponding group of left-isoclinic rotation matrices $\exp(\operatorname{Isoc}(\hat{x}))$ has a composition law given by left-multiplication of unit quaternions with imaginary part proportional to x, and hence is isomorphic to $S^3 \cong SU(2)$. The whole group G is obtained by multiplying the general left-isoclinic multiplication $\exp(\operatorname{Isoc}(A))$ with the special right-isoclinic multiplication $\exp(K\tau)$. These two commute, since $\operatorname{Isoc}(A)$ and K commute. The group $\exp(K\tau)$ is isomorphic to SO(2).

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia

Lemma 3.2. The group action Ψ_S has momentum map $L = \Im(\boldsymbol{Q} * \bar{\boldsymbol{P}})$ and $L_{\tau} = \boldsymbol{Q}^T K \boldsymbol{P}$ which are mapped into the Lie algebra \mathfrak{g} by $\frac{1}{2} \operatorname{Isoc}(\hat{L}) + L_{\tau}$. When in addition, the bilinear relation is imposed then $\pi \circ L$ becomes the ordinary momentum $\boldsymbol{q} \times \boldsymbol{p}$.

Here \Im applied to a quaternion takes its i, j, k components.

Proof. The natural definition of the components of the angular momentum is $L_{\alpha} = q^T I soc(\hat{\alpha}) p$ where $\alpha \in \{x, y, z, \}$. These components indeed form the imaginary components of $\boldsymbol{Q} * \bar{\boldsymbol{P}}$. For example, $q^T I soc(\hat{y}) p = Q_1 P_3 - P_1 Q_3 + Q_2 P_4 - P_2 Q_4$ is the *j*-component of the quaternion $\boldsymbol{Q} * \bar{\boldsymbol{P}}$. The second statement is shown through direct computation. See [9] for more details.

Lemma 3.3. The basic polynomial invariants of the group action Ψ_S of G are

$$X_1 = \boldsymbol{Q}^T \boldsymbol{Q}, \quad X_2 = \boldsymbol{P}^T \boldsymbol{P}, \quad X_3 = \boldsymbol{Q}^T \boldsymbol{P}, \quad X_4 = \boldsymbol{P}^T K \boldsymbol{Q},$$

The Poisson bracket of these invariants is closed.

Proof. Firstly, SO(4), as the group of rotations preserves the inner product on \mathbb{R}^4 . Thus, G as subgroup of SO(4) must also preserve the inner product. Hence, the first three are clearly invariants. Furthermore, denoting $exp(Isoc(\alpha))$ as $R(\alpha)$ where $\alpha \in$ $\{\hat{x}, \hat{y}, \hat{z}\}$, it is easily shown that $R(\alpha)^T K R(\alpha) = K \forall \alpha$. Also, $exp(K)^T K exp(K) = K$. Thus, Ψ_s preserves quadratic forms over K and hence the fourth quantity is also an invariant. Furthermore, it can be shown by direct computation that the only matrices, M, that satisfy $\{x^T M x, L_\alpha\} = 0$ where $x \in \{\mathbf{Q}, \mathbf{P}\}$, for all $\alpha \in \{x, y, z, \tau\}$ are linear combinations of K and the identity matrix. Therefore, the above set is a basis for our

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia

vector space of quadratic invariants. The Poisson algebra has the following structure:

$$\{X_i, X_4\} = 0 \qquad \forall i \in \{1, 2, 3, 4\}$$
(3.1)

$$\{X_i, X_3\} = 2X_i \qquad \forall i \in \{1, 2\} \tag{3.2}$$

$$\{X_1, X_2\} = 4X_3 \tag{3.3}$$

It follows that vector space generated by these four invariants are closed under the Poisson bracket.

Under the basis (X_1, X_2, X_3, X_4) , the Poisson structure matrix is

(0	$4X_3$	$2X_1$	0)	
	$-4X_{3}$	0	$-2X_{2}$	0	
	$-2X_1$	$2X_2$	0	0	•
	0	0	0	0)	

Furthermore, Lie algebra of the quadratic invariants is actually isomorphic to $\mathfrak{u}(1,1)$. Refer to [9] for details.

4 The 3-body problem n = 3

The action Ψ_S on pairs $(\boldsymbol{q}, \boldsymbol{p})$ extends to an action (denoted by the same letter) on triples of pairs $(\boldsymbol{q}_{ij}, \boldsymbol{p}_{ij})$. Since the action is diagonal, to get the corresponding angular momenta the individual momenta are simply added together, $\mathcal{L}_a = \sum L_a^i$ for $a \in \{x, y, z, \tau\}$.

Choosing the correct symmetry group is crucial in order to obtain a good set of quadratic invariants. When enlarging the group by taking each L^i_{τ} separately instead

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia Email: enquiries@amsi.org.au Phone: +61 3 8344 1777 Fax: +61 3 9349 4106 Web: www.amsi.org.au of their sum as generators the set of quadratic invariants has only 9 elements. However, Heggies' Hamiltonian cannot be written in terms of these 9 invariants. The present choice of Ψ_S gives the smallest set of closed quadratic invariants in terms of which the Hamiltonian can be expressed.

Lemma 4.1. The set of quadratic forms Q invariant under Ψ_S is of the form Q = (X, MX) with

$$M = [W]_{sym} \otimes I_4 + [W]_{skew} \otimes K$$

where W is an arbitrary 6×6 matrix, $X = (\mathbf{Q}_1^T, \mathbf{Q}_2^T, \mathbf{Q}_3^T, \mathbf{P}_1^T, \mathbf{P}_2^T, \mathbf{P}_3^T)$ and \otimes denotes the Kronecker product. The space of quadratic invariants is closed under the Poisson bracket and hence form a Lie algebra \mathfrak{g} .

Proof. As in Lemma 3.3, the inner products and the quadratic forms over K are the invariants under Ψ_S . Representing these as quadratic forms over the 24 dimensional phase space, it is clear that the matrices of the inner products have the form $E \otimes I_4$ where E is an element of the standard basis of sym(6). Similarly, the quadratic forms over K can be represented as $F \otimes K$ where F is an element of the standard basis of skew(6). As the sum of invariants is invariant, the matrix for any quadratic invariant can be written as $S \otimes I_4 + A \otimes K$ where $S \in sym(6), A \in skew(6)$. Thus, the set of quadratic invariants is of the form Q = (X, MX) where

$$M = [W]_{sym} \otimes I_4 + [W]_{skew} \otimes K$$

where W is an arbitrary 6×6 matrix and so the space of quadratic invariants is isomorphic to $Mat(6 \times 6, \mathbb{R})$ as vector spaces. The Poisson bracket of two inner products and that of two quadratic forms over K are linear combinations of inner products while the Poisson bracket of an inner product and a quadratic form over K is a linear combination of quadratic forms over K. Thus, the Poisson bracket is closed. For example, defining $\alpha_{i,j} = Q_i^T Q_j$, $\beta_{i,j} = P_i^T P_j$, $\gamma_{i,j} = Q_i^T P_j$, $a_{i,j} = Q_i^T K Q_j$, $b_{i,j} =$ $P_i^T K P_j$, $c_{i,j} = Q_i^T K P_j$, we have that $\{\alpha_{1,1}, \beta_{1,1}\} = 4\gamma_{1,1}$, while, $\{\alpha_{1,1}, c_{3,1}\} = -2a_{1,3}$. Furthermore, this implies that the 21-dimensional subspace generated by all possible

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia

combinations of inner products is closed under the Poisson bracket and hence form a subalgebra.

Let $f_{ij} = 4(\gamma_{i,j}\gamma_{j,i} - \gamma_{i,i}\gamma_{j,j} + \beta_{i,j}\alpha_{i,j} - c_{i,j}c_{j,i} + b_{i,j}a_{i,j})$. The Hamiltonian in terms of the invariant quadratic forms reads

$$H = \frac{1}{8} \left(\frac{\alpha_{2,2}\alpha_{3,3}}{\mu_{23}} \beta_{1,1} + \frac{\alpha_{3,3}\alpha_{1,1}}{\mu_{13}} \beta_{2,2} + \frac{\alpha_{1,1}\alpha_{2,2}}{\mu_{12}} \beta_{3,3} \right) - \frac{1}{16} \left(\frac{\alpha_{1,1}}{m_1} f_{23} + \frac{\alpha_{2,2}}{m_2} f_{13} + \frac{\alpha_{3,3}}{m_3} f_{12} \right) - m_2 m_3 \alpha_{2,2} \alpha_{3,3} - m_1 m_3 \alpha_{1,1} \alpha_{3,3} - m_1 m_2 \alpha_{1,1} \alpha_{2,2} - h \alpha_{1,1} \alpha_{2,2} \alpha_{3,3}$$

Now in order to work out the isomorphism type of the Lie algebra of quadratic invariants, we need to induce Lie bracket on $Mat(6 \times 6, \mathbb{R})$. In general we have the following:

Lemma 4.2. If $\varphi : X \to Y$ is a vector space isomorphism between the Lie algebra $(X, [\cdot, \cdot]_X)$ and the vector space Y (both over the same field) then $[y_1, y_2]_Y = \varphi([\varphi^{-1}(y_1), \varphi^{-1}(y_2)]_X)$ defines a Lie bracket on Y and hence $(X, [\cdot, \cdot]_X)$ and $(Y, [\cdot, \cdot]_Y)$ are isomorphic as Lie algebras under φ .

Proof. As φ is an isomorphism, both φ and φ^{-1} are linear and bijective so we have:

- 1. Bilinearity: $[\alpha y_1 + \beta y_2 \gamma, y_3 + \delta y_4]_Y = \varphi([\varphi^{-1}(\alpha y_1 + \beta y_2), \varphi^{-1}(\gamma y_3 + \delta y_4)]_X = \alpha \gamma [y_1, y_3]_Y + \alpha \delta [y_1, y_4]_Y + \beta \gamma [y_2, y_3]_Y + \beta \delta [y_2 + y_4]_Y$ by linearity of φ , φ^{-1} and bilinearity of $[\cdot, \cdot]_X$.
- 2. Alternating: $[y, y]_Y = \varphi([\varphi^{-1}(y), \varphi^{-1}(y)]_X) = \varphi(0) = 0$ as $[\cdot, \cdot]_X$ is alternating and $0 \in \ker(\varphi)$.

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia
 Email:
 enquiries@amsi.org.au

 Phone:
 +61 3 8344 1777

 Fax:
 +61 3 9349 4106

 Web:
 www.amsi.org.au

3. Jacobi Identity: $[y_1, [y_2, y_3]] + [y_3, [y_1, y_2]] + [y_2, [y_3, y_1]] = \varphi([[\varphi^{-1}(y_1), [[\varphi^{-1}(y_2), [\varphi^{-1}(y_3)]] + [[\varphi^{-1}(y_3), [[\varphi^{-1}(y_1), [\varphi^{-1}(y_2)]] + [[\varphi^{-1}(y_2), [[\varphi^{-1}(y_3), [\varphi^{-1}(y_1)]]) = \varphi(0) = 0$ by Jacobi Identity of $[\cdot, \cdot]_X$ and linearity of φ .

Since we have quadratic invariants, the new Poisson bracket induces an algebra on the form of the quadratic invariants. There is a bijection between the space of quadratic functions over our phase space $((T^*\mathbb{R}^4)^3 \cong \mathbb{R}^{24})$ and the vector space of 24×24 symmetric matrices. Therefore we get an isomorphism from a subspace U of $Sym(24, \mathbb{R})$ and the vector space generated by the 36 quadratic invariants (denote this Z) given by:

$$f: U \to Z; \qquad M \mapsto \frac{1}{2} \langle \mathbf{X}, M \mathbf{X} \rangle$$

where $X = (\mathbf{Q}_1, ..., \mathbf{Q}_4, \mathbf{P}_1, ..., \mathbf{P}_4)$ is the vector of the 24 variables (order in a sensible manner...). We can turn U into a Lie Algebra by defining the Lie bracket:

$$[\cdot,\cdot]_f: U \times U \to U;$$
 $[M,N]_f = MJN + (MJN)^T = MJN - NJM = 2[MJN]_{sym}.$

It is well known that this algebra is isomorphic to $\mathfrak{sp}(m)$ [3], where in our case m = 24.

From Lemma 4.1 and Lemma 4.2 the isomorphism $m : U \to Mat(6 \times 6, \mathbb{R})$ given by $m(\tilde{A} \otimes I_4 + \check{A} \otimes K) = \tilde{A} + \check{A} := A$ induces a Lie Bracket $[\cdot, \cdot]_m$ on $Mat(6 \times 6, \mathbb{R})$. We have

$$[m^{-1}(A), m^{-1}(B)]_{f} = [m^{-1}(A)J_{24} m(B)]_{sym} = [m^{-1}(A)(J_{6} \otimes I_{4})m^{-1}(B)]_{sym}$$

$$= [(\tilde{A} \otimes I_{4} + \check{A} \otimes K)(J \otimes I_{4})(\tilde{B} \otimes I_{4} + \check{B} \otimes K)]_{sym}$$

$$= [(\tilde{A}J\tilde{B} - \check{A}J\check{B}) \otimes I_{4} + (\check{A}J\tilde{B} + \tilde{A}J\check{B}) \otimes K]_{sym}$$

$$= (\tilde{A}J\tilde{B} - \tilde{B}J\tilde{A} - \check{A}J\check{B} + \check{B}J\check{A}) \otimes I_{4} + (\check{A}J\tilde{B} - \tilde{B}J\check{A} + \tilde{A}J\check{B} + \check{B}J\tilde{A}) \otimes K$$

$$= -J([J\tilde{A}, J\tilde{B}] - [J\check{A}, J\check{B}]) \otimes I_{4} - J([J\tilde{A}, J\check{B}] + [J\check{A}, J\tilde{B}]) \otimes K$$

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia
 Email:
 enquiries@amsi.org.au

 Phone:
 +61 3 8344 1777

 Fax:
 +61 3 9349 4106

 Web:
 www.amsi.org.au

where $(\tilde{\cdot}) = [\cdot]_{sym}$ and $(\tilde{\cdot}) = [\cdot]_{skew}$. Hence $[A, B]_m = -J([J\tilde{A}, J\tilde{B}] - [J\check{A}, J\check{B}] + [J\tilde{A}, J\tilde{B}] + [J\check{A}, J\tilde{B}])$ is the induced bracket on $Mat(6 \times 6, \mathbb{R})$. Now we are ready for the core theorem of this paper:

Theorem 4.1. The symmetry reduced regularised 3-body problem has a Lie-Poisson structure with algebra $\mathfrak{u}(3,3)$ and a corresponding Hilbert basis of 36 quadratic functions invariant under Ψ_S .

Proof. For $A \in Mat(6 \times 6, \mathbb{R})$ then the matrix $a = J(\tilde{A} + i\check{A})$ is in $\mathfrak{u}(3,3)$, as the hermitian matrix H = -iJ has eigenvalues ± 1 each with multiplicity 3 and we have $(HM)^{\dagger} + HM = 0$. Therefore we have a vector space isomorphism $h : Mat(6 \times 6, \mathbb{R}) \rightarrow$ $\mathfrak{u}(3,3)$ with $h(A) = -2iJ(\tilde{A} + i\check{A}) = a$. We now compute the induced bracket on the vector space of $\mathfrak{u}(3,3)$ under $h, [\cdot, \cdot]_h$ and show that this coincides with the standard commutator (which is the Lie bracket on $\mathfrak{u}(3,3)$). We have:

$$[h^{-1}(a), h^{-1}(b)]_m = -J([J\tilde{A}, J\tilde{B}] - [J\check{A}, J\check{B}] + [J\tilde{A}, J\check{B}] + [J\check{A}, J\tilde{B}])$$

with $[[h^{-1}(a), h^{-1}(b)]_m]_{sym} = -J([J\tilde{A}, J\tilde{B}] - [J\check{A}, J\check{B}])$ and $[[h^{-1}(a), h^{-1}(b)]_m]_{skew} = -J([J\tilde{A}, J\check{B}] + [J\check{A}, J\tilde{B}])$. Hence

$$\begin{split} [a,b]_h &= h\left([h^{-1}(a),h^{-1}(b)]_m\right) \\ &= J\left(-J\left([J\tilde{A},J\tilde{B}] - [J\check{A},J\check{B}]\right) - iJ\left([J\tilde{A},J\check{B}] + [J\check{A},J\tilde{B}]\right)\right) \\ &= [J\tilde{A},J\tilde{B}] + [Ji\check{A},Ji\check{B}] + [J\tilde{A},Ji\check{B}] + [Ji\check{A},J\tilde{B}] \\ &= [J(\tilde{A}+i\check{A}),J(\tilde{B}+i\check{B})] \\ &= [a,b] \,. \end{split}$$

This proves that space of quadratic invariants and $\mathfrak{u}(3,3)$ are isomorphic as Lie algebra.

Reduction by the centre of the algebra which is generated by \mathcal{L}_{τ} gives $\mathfrak{su}(3,3)$.

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia

Lemma 4.3. The Poisson structure has 6 Casimirs of degree 1 through 6. The linear Casimir is the sum of the bilinear integrals \mathcal{L}_{τ} , the quadratic Casimir is the sum of the three angular momenta squared $\mathcal{L}_x^2 + \mathcal{L}_x^2 + \mathcal{L}_z^2$.

Proof. The Poisson bracket of the Lie algebra, in this matrix representation, can be written as (1 + 5)

$$\{f,g\}(M) = \left\langle M, \left[\frac{df}{dM}, \frac{dg}{dM}\right] \right\rangle$$

where, the inner product is given by $\langle M, N \rangle = \text{Tr}(M^{\dagger}M)$ and $\frac{df}{dM}$ refers to the element in \mathfrak{g} that satisfies

$$\lim_{e \to 0} [f(M + edM) - f(M)] = < dM, \frac{df}{dM} >$$

See [10] for more details. It can be shown that the co-efficients of the characteristic polynomial of $J(\tilde{A} + i\tilde{A})$ are in fact the Casimirs under this Poisson bracket. The co-efficient of the fifth order term is just the sum of the bilinear integrals, \mathcal{L}_{τ} . The co-efficient of the quartic term is of the form:

$$\mathcal{L}_x^2 + \mathcal{L}_y^2 + \mathcal{L}_z^2 + f(\mathcal{L}_\tau)$$

where $f(\mathcal{L}_{\tau})$ is a quadratic function of the bilinear integrals. Under the reduction by the centre, this Casimir simply becomes $\mathcal{L}_x^2 + \mathcal{L}_y^2 + \mathcal{L}_z^2$.

The fact that the three difference vectors \mathbf{q}_{ij} add to zero induces another three quadratic integrals T_1, T_2, T_3 . The flow of these integrals is non-compact, and we were not able to use it for symmetry reduction. The three momenta and the integrals T_i form the Algebra $\mathfrak{se}(3)$.

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia Email: enquiries@amsi.org.au Phone: +61 3 8344 1777 Fax: +61 3 9349 4106 Web: www.amsi.org.au

5 The *n*-body problem

Theorem 5.1. The symmetry reduced regularised n-body problem has a Lie-Poisson structure with algebra $\mathfrak{u}(m,m)$ where m = n(n-1)/2.

Proof. As shown in Lemma 4.1, the nature of the invariants under Ψ_S are independent of the number of particles. They are realised as in the aforementioned lemma in phase space by the use of symmetric and antisymmetric matrices of size $2m \times 2m$ where mdenotes the number of difference vectors in the system. This establishes the vector space isomorphism to the space of $2m \times 2m$ matrices. Furthermore, by Theorem 4.1, it is apparent that the Lie algebra of invariants is isomorphic to $\mathfrak{u}(m,m)$. As m is equal to $\binom{n}{2} = n(n-1)/2$, the algebra of invariants for the symmetry reduced regularised n-body problem has a Lie-Poisson structure with algebra $\mathfrak{u}(n(n-1)/2, n(n-1)/2)$.

6 Conclusion

In this paper, we have shown that the quadratic invariants of the regularised n-body problem are either inner products or quadratic forms over the antisymmetric matrix K. These invariants form a Lie-Poisson algebra that is isomorphic to the lie algebra $\mathfrak{su}(m,m)$ where m = n(n-1)/2 which is the algebra corresponding to the group that preserves hermitian forms of signature (m,m). The dimension of this Lie Algebra is of order n^4 . Thus the use of such an algebra to obtain numerical solutions is improbable for large values of n. Despite this, the isomorphism to $\mathfrak{su}(m,m)$ yields a large amount of information about the rich structure of these invariants and provides insight into the n-body problem.

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia Email: enquiries@amsi.org.au Phone: +61 3 8344 1777 Fax: +61 3 9349 4106 Web: www.amsi.org.au

7 Acknowledgment

This paper was co-written by Somasuntharam Arunasalam, A/Prof. Holger Dullin and myself as part of the Vacation Research Scholarship funded by AMSI. I would like to thank my supervisor A/Prof. Holger Dullin for his teaching, support and inspiration and also my partner Somasuntharam Arunasalam for all the fun and constructive collaboration we have had throughout the project. I have thoroughly enjoyed this project (despite missing out on the Big Day Out) and have learned many valuable lessons that will indubitably help my future studies. I would also like to thank AMSI and CSIRO for their generous funding which has given me the opportunity to experience the reality of research.

Diana Nguyen received a 2013/14 AMSI Vacation Research Scholarship.

References

- Meyer, K. R., & Hall, G. R. (1992). Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. New York, NY: Springer New York.
- [2] Sadetov, S. T. (2002). On the regular reduction of the n-dimensional problem of N+1 bodies to Euler-Poincaré equations on the Lie algebra sp(2N). Regul Chaotic Dyn, 7(3), 337-350.
- [3] Dullin, H. R. (2013). The Lie-Poisson structure of the reduced n-body problem. Nonlinearity, 26(6), 1565-1579.
- [4] Levi-Civita, T. (1920). On the regulation of the problem of three bodies. Acta Mathematica, 42(1), 99-144.
- [5] Saha, P. (2009). Interpreting the Kustaanheimo-Stiefel transform in gravitational dynamics. Monthly Notices of the Royal Astronomical Society, 400(1), 228-231.

Postal Address: 111 Barry Street c/- The University of Melbourne Victoria 3010 Australia

- [6] Heggie, D. C. (1974). A Global Regularisation of the Gravitational N-Body Problem. Celestial Mechanics, 10, 217-241.
- [7] Moeckel, R., & Montgomery, R. (2013). Symmetric regularization, reduction and blow-up of the planar three-body problem. Pacific journal of mathematics, 262(1), 129-189.
- [8] Waldvogel, J. (2008). Quaternions for regularizing Celestial Mechanics: the right way. Celest Mech Dyn Astr, 102, 149–162.
- Kummer, M. (1982). On the Regularization of the Kepler Problem. Commun.Math.Phys., 84, 133-152.
- [10] Marsden, J. E., & Ratiu, T. S. (1998). Mechanics and symmetry. Reduction theory. Internet.