
Efficient preconditioning of Krylov subspace
methods with applications for fractional PDEs

Alex Simmons
Supervisor: Dr. Qianqian Yang

Queensland University of Technology

February 2014

1 Introduction

The theory of fractional derivatives and integrals dates back hundreds of years to a
letter from Leibniz discussing with L’Hopital the meaning of a derivative of order
one half. It has only been in the last few decades that there has been considerable
interest in utilising fractional calculus for important practical applications. Due to the
recent explosion in popularity there is a significant demand for efficient techniques to
stimulate insight into the behaviors of fractional models.

Fractional derivatives can be used to model diffusion-type processes where the un-
derlying particle motion deviates from Brownian motion [3]. Due to this, typical
applications are models based on transport in porous media such as seepage flow [29],
coastal aquifer salt-water intrusion [7] or, wood drying [36]. Models are not restricted
to transport in porous media, work is being conducted in drug delivery models [45],
heart physiology [21, 35], bioengineering [24] and optimal image processing [6].

It has been well established that analytical methods exist for only a small number
of special, simple, mostly linear fractional models. To determine solutions to more
complicated fractional models, efficient numerical methods are preferred and, in most
cases, required. Compared to integer-order methods, fractional models pose significant
computational challenges. In the last decade substantial work has been completed in
determining efficient numerical methods for approximating fractional models, including
finite difference methods [26, 25, 23, 5], finite volume methods [40, 31], finite elements
methods [44, 37], spectral methods [39, 1] and mesh-free methods [41, 30].



In this paper we consider the space-fractional diffusion equation (SFDE) with non-
linear source term

∂u(x, t)

∂t
= −κ

(
−∇2

)α/2
u(x, t) + S(u(x, t), x, t) (1)

on the finite domain 0 ≤ x ≤ L with homogeneous Dirichlet boundary conditions and
initial condition u(x, 0) = u0(x) with the fractional order satisfying 1 < α ≤ 2.

Definition 1 [17]. Suppose the Laplacian (−∇2) has a complete set of orthonor-
mal eigenfunctions ϕn corresponding to eigenvalues λ2

n on a bounded region D, i.e,
(−∇2)ϕn = λ2

nϕn on a bounded region D; B(ϕ) = 0 on ∂B, where B(ϕ) is one of the
standard three homogeneous boundary conditions. Let

Fγ =

{
f =

∞∑
n=1

cnϕn, cn = 〈f, ϕn〉,
∞∑
n=1

|cn||λ|γn <∞, γ = max(α, 0)

}
then for any f ∈ Fγ, (−∇2)α/2f is defined by

(−∇2)α/2f =
∞∑
n=1

cn(λ2
n)α/2ϕn.

The most significant challenge faced by researchers in this area is the high computational-
expense of obtaining numerical solutions to fractional models, such as equation (1).
When using techniques such as the Matrix Transfer Technique proposed by Ilić et al
[18] to convert a SFDE into a system of differential equations, due to the non-local
nature of the fractional derivative, the resulting systems have a fully dense nature.
This can be seen when we spatially discretise our model in equation (2) and signifies
a need for high-efficiency numerical methods that can significantly reduce the amount
of computer time required to approximate these dense fractional models.

To spatially discretise our system we introduce a mesh with N + 1 uniformly dis-
tributed nodes of width h = L/N , and N + 1 nodes xi for i = 0 . . . N , where xi = ih.
To transform our SFDE from equation (1) into a system of time ordinary differential
equations we use the Matrix Transfer Technique introduced by Ilić et al [18]. To apply
the Matrix Transfer Technique we use the spatial discretisation within a method of
lines framework such that (−∇2)α/2u ≈ Aα/2u(t) with homogeneous Dirichlet bound-
ary conditions where A is tridiag(−1, 2,−1) and u(t) is the spatially discretised
approximation to the solution u(x, t); from this it follows that the system of non-linear
time ODEs has the form

u̇ = F(u, t) := −κAα/2u(t) + S(u,x, t), u(x, 0) = u0(x). (2)



For homogeneous Dirichlet boundary conditions the discretisation in equation (2) ap-
plies only to the inner nodes xi ∀ 0 < i < N+1, the outer boundary nodes x0 and xN+1

are set to zero. When 1 < α < 2 then it is important to highlight that Aα/2 has a fully
dense nature. This presents computational challenges that stimulates our discussion
in Section 3, most significantly, and the justification for our new preconditioner, the
Jacobian matrix J = ∂F/∂u is fully dense.

One of the computational techniques that we implement is Newton’s method to
handle the non-linearity within equation (2). Due to the non-local nature of the frac-
tional derivative we require the solution to dense linear systems owing to the dense
Jacobians that result from the fractional Laplacian. To avoid explicitly forming these
dense Jacobians, the Jacobian-Free Newton-Krylov (JFNK) method [20] is employed.
This method has been considered previously by Moroney and Yang [28, 27]. We also
introduce high order timestepping through backwards differentiation formulas (BDF).

We implement the Generalised Minimal Residual method from the class of Krylov
subspace techniques to form the Krylov component of the JFNK method because of
its ability to approximate linear systems without the need to operate directly on the
matrix. We also investigate the Lanczos method for approximating matrix-function-
vector-products f(A)v = Aα/2v without the need to explicitly form the memory inten-
sive matrix function Aα/2. This technique has been heavily considered by many authors
such as Van der Vorst [38], Saad [32], Druskin and Knizhnerman [8], Hochbruck and
Lubich [14], Sidje [34], van den Eshof [10], Eiermann and Ernst [9], Lopez and Si-
moncini [22], Ilić, Turner, and Anh [15] and Ilić, Turner, and Simpson [16] as well
as many other researchers during the last twenty years. The primary concern with
using Krylov subspace techniques is the requirement of an effective preconditioner to
accelerate convergence of the technique.

Implicitly applied preconditioners has been a particular interest in literature due to
their ability to avoid the high cost of dense matrix multiplication for significantly large
problems. Due to the prevalence of Krylov subspace methods for approximating the
solutions to linear systems or matrix-function-vector-products Erhel et al [19] devel-
oped a preconditioner based on eigenvalue deflation. Burrage et al. [4] considered both
algebraic multigrid and incomplete LU preconditioning. For preconditioning two-sided
nonlinear SFDE Moroney and Yang developed a fast Poisson preconditioner [28] and
a banded preconditioner [27].

The focus of this paper is the development of a new banded preconditioner for ac-
celerating the Generalised Minimal Residual method component of the JFNK method,
without which, runtimes are orders of magnitude larger than what can be achieved.
To put this work in context, we begin by discussing the key numerical concepts that



we utilise to derive approximate solutions to our nonlinear SFDE. Once this has been
conducted, arguments are formed that justify the requirements of a new preconditioner
before moving on to discussing the processes undertaken. Numerical results are then
derived that justify the effectiveness of our preconditioner and conclusions are then
drawn.

While Krylov subspace techniques is a continuous theme within this paper, we
also consider the contour Integral Method refined by Hale et al [12] for approximating
matrix-function-vector-products. Through investigation we arrive at a preference of the
contour integral method over the Lanczos method for approximating matrix-function-
vector-products due to significant runtime reductions in 1-D problems.

The remainder of this paper is as follows. In Section 2 we introduce the BDF for
integrating the initial value problem that results from equation (2), we also introduce
the JFNK method [20]. In Section 3 we introduce the banded preconditioner that we
have developed. We use a discretisation of the Riesz fractional derivative and a sum-
mation over a few local neighbours using the shifted Grünwald-Letnikov approximation
to approximate the discretised fractional Laplacian. We then consider two methods for
approximating f(A)b, the Lanczos method from the class of Krylov subspace methods
as well and the contour integral method. We discuss briefly the theory behind the two
methods before using numerical experiments as a justification for a preference towards
the contour integral method for our purposes. In Section 5 we conduct some numeri-
cal experiments where we solve our space-fractional nonlinear diffusion equation. We
demonstrate the infeasibility of not implementing our banded preconditioner as well as
the significant acceleration that is gained from its implementation. We conclude this
paper in Section 6.

1.1 Backwards differentiation formulas

Backwards differentiation formulas are a family of implicit multistep methods for solv-
ing initial value problems [11]. Given a solution at time tn−1, where u(tn−1,x) ≈
un−1(x) is known then the next point in time tn = tn−1 + τn where τn is the stepsize
[13]. The generalised class of BDF formulas for determining an approximation to the
derivative u̇(t) is

u̇ ≈ 1

τn

q∑
p=0

βn,pun−p. (3)

where q is the order of the BDF, and the coefficients βn,p depend on the recent order
and stepsize. One of the most common and best-know BDF is the backwards Euler
method which corresponds to q = 1 and βn,0 = 1 and βn,1 = −1.



In our implementation we utilise the powerful CVODE package for stiff IVP-BDF
problems from the SUNDIALS (Suite of Nonlinear and Differential/Algebraic Equa-
tion Solvers) suite [13]. The justification for using modern IVP-BDF solvers such
as CVODE is due to their use of sophisticated algorithms to adaptively adjust the
timestep and order size within a predetermined tolerance level. This allows the step-
size to be kept as large as possible while still maintaining accuracy, providing significant
performance gains over hard-coded methods such as backwards Euler or similar.

Substituting our BDF (3) into (2)

1

τn

q∑
p=0

βn,pun−p = −κAα/2u + S(u,x, t).

Rearranging for the unknown solution un,

Gn(un) := un − γnF(un, tn) + an = 0 (4)

where γn = τn/βn,0 and an =
∑q

p=1(βn,p/βn,0)un−p. At this point we introduce New-

ton’s method applied to (4). Let ukn be the kth iterate in the sequence {ukn}∞k=0 → un
with correction vector δukn:

uk+1
n = ukn + δukn. (5)

To obtain δukn we must solve(
I− γnJ(ukn)

)
δukn = −Gn(ukn). (6)

J = ∂F/∂u has a dense nature and in-turn poses significant memory requirements if we
were to explicitly form it. To avoid this issue we choose to implement the Jacobian-Free
Newton-Krylov method to avoid the forming and solving J(ukn).

1.2 Jacobian-free Newton-Krylov methods

To avoid explicitly solving (6) we approximate a solution to δukn by introducing Krylov
subspace methods. As a brief introduction, Krylov subspace methods for solving
AJx = b is a projection method onto the Krylov subspace

Km(AJ ,b) = span{b,AJb, . . . ,A
m−1
J b}. (7)

Applied to (6) such that AJ = I−γnJ(ukn), x = δukn and b = −Gn(un) then the action
of the matrix AJ on some suitably chosen vector v is required

AJv = v − γnJ(ukn)v.



It is important to notice that the Jacobian-vector product can be approximated [20]
without the explicit formation of the Jacobian J with

J(ukn)v ≈ F(ukn + εv, tn)− F(ukn, tn)

ε
(8)

and a suitably chosen shift value ε. With the formation of F(ukn, tn), each successive
Jacobian-vector product only requires one additional formulation of the RHS vector
F. This Jacobian-free approach, combined with Newton’s method, leads to a class of
Jacobian-free Newton-Krylov methods for solving (4).

The introduction of Krylov subspace methods presents a significant difficulty. Due
to the wide range of time scales present in the semidiscrete system, we are faced with
the well known problem of “stiffness”. This significantly hinders the performance of
the Krylov subspace method [13, 20, 33]. To overcome this, the standard procedure is
to precondition the system before applying the Krylov subspace method.

Rather than solve AJx = b directly, we solve

M−1AJx = M−1b

by projecting onto the Krylov subspace

Km(M−1AJ ,b) = span{b, (M−1AJ)b, . . . , (M−1AJ)m−1b}. (9)

The idea is that, if M−1 closely resembles A−1 or captures a significant amount of the
“stiffness” in the problem then convergence of the Krylov subspace method should be
significantly accelerated such that m � n where A ∈ Rn×n. For our preconditioner
M−1 it should be easy to form and factorise yet still capture the most significant
amount of underlying physics within our problem. How we achieve this is covered in
Section 4.

2 Banded Preconditioner

In this section we define the form of our preconditioner M−1. This is achieved by
expanding the Jacobian in AJ

AJ = I− γnJ = I− γn
∂F

∂u
= I− γn

(
−κAα/2 +

∂S

∂u

)
. (10)

It is evident from (10) that the dense nature owes to the matrix A
α/2
J . What we propose

is to form some banded matrix B ≈ A
α/2
J . If the bandwidth of B is sufficiently small



yet still captures a significant proportion of the physical dynamics in our problem then
our preconditioner

M = I− γn
(
−κB +

∂S

∂u

)
(11)

should be easily factorisable. To form the banded approximation to the discretised
fractional Laplacian we employ the Riesz fractional derivative [42]. We then utilise the
shifted-Grünwald Letnikov approximation to generate a discrestised representation of
the Riesz fractional derivative

gα,0 = 1, gα,j = (−1)j
α(α− 1) . . . (α− j + 1)

j!
, (12)

Bij =
1

2 cos
(
πα
2

)
hα



gα,i−j+1, j < i− 1,

gα,2 + gα,0, j = i− 1,

gα,1, j = i,

gα,2 + gα,0, j = i+ 1,

gα,i−j+1, j > i+ 1.

(13)

Recalling from earlier, we argued that if the preconditioner M−1 has a significantly
small bandwidth than it is easily factorised. By forming our matrix B from only the
central diagonal elements defined by the Riesz fractional derivative this is achievable
while still capturing the significant physical processes. Shown in 1 is evidence that the
most significant elements in the discretised fractional Laplacian Aα/2 lay around the
diagonal.

We demonstrate using Figure 2 that the matrix B defined from (12)-(13) captures
the most significant elements of Aα/2 while still maintaining a relatively small band-
width. It is known that there are two sources of error when attempting to approximate
Aα/2 with our matrix B; the banded nature of B and the difference in the operator
definitions.



Figure 1: Magnitude of the elements of log10(|Aα/2|) with dimension 1000 × 1000.
Demonstrates that the points that are most significant in modelling the system lay
around the diagonal.

Figure 2: Magnitude of the elements of log10(|B|) with varying bandwidths of b =
{11, 101, 201, 1001}. The colour mapping used in Figure 1 is reused in all subplots
presented here.

3 Approximating f (A)b

A significant issue that needs to be highlighted is the evaluation of Aα/2b required
in the JFNK method. To maintain a consistent theme, we wish to avoid the explicit



formulation of the dense matrix Aα/2. Covered in this paper are two methods, the
Lanczos method from the class of Krylov subspace methods, and the contour integral
method. In this section, we briefly cover the theory behind these two methods before
justifying our preference for the contour integral method with some numerical results.

3.1 Preconditioned Lanczos Method

In this section we briefly cover the Lanczos method with the application of an adap-
tive preconditioner, a prevailing method in literature for approximating the maxtrix-
function-vector product f(A)b approximation. For a scalar, analytic function f : D ⊂
C→ C then

f(A)b ≈ ||b||Vmf(Tm)e1, b = ||b||Vme1, (14)

where

AVm = VmTm + βmvm+1e
T
m. (15)

is the Lanczos decomposition with the columns of Vm forming an orthonormal basis
for the Krylov subspace Km(A,b) = span{b,Ab, . . . ,Am−1b} and Tm is symmetric
and tridiagonal when A is symmetric [38]. To accelerate convergence of the Lanczos
method we implement an adaptive preconditioner Z−1 [19]. This adaptive precondi-
tioner has been considered by Yang et al. [44, 43], Ilić et al. [15, 16], Baglama et al.
[2] and, others. This adaptive preconditioner shifts the k smallest eigenvalues which
are known to hinder convergence of the Lanczos method.

We compute the k smallest eigenvalues {λi}ki=1 and corresponding eigenvectors
{qi}ki=1 of the matrix A. Methods exists to do this efficiently but for our problem,
they are known exactly. Setting Qk = [q1,q2, . . . ,qk] and Λk = diag{λ1, . . . , λk} then
Erhel et al. [19] proposes the preconditioner

Z−1 = θ∗QkΛkQ
T
k + I−QkQ

T
k . (16)

where θ∗ = λmin+λmax

2
. λmin and λmax are the smallest and largest eigenvalues

of A respectively. Baglama et al. [2] demonstrates that AZ−1 maintains the same
eigenvectors of A but has the k smallest eigenvalues mapped to θ∗, eliminating their
influence in hindering convergence of the Lanczos method. Ilić et al. [15] defines the
relationship between f(A)b and f(AZ−1)b

f(A)b = Qkf(Λk)Q
T
kb + f(AZ−1)b̂. (17)



where b̂ = (I−QkQ
T
k )b and

AZ−1Vm = VmTm + βmvm+1e
T
m, (18)

where v1 = b̂/||b̂|| and the columns of Vm form an orthonormal basis for the
Krylov subspace Km(AZ−1,b) = span{b̂,AZ−1b̂, . . . , (AZ−1)mb̂}. The Lanczos ap-
proximation (14) gives

f(AZ−1)b̂ ≈ Vmf(Tm)VT
mb̂ (19)

where the much smaller matrix function f(Tm) can be easily calculated by finding
the diagonalisation of Tm.

3.2 Contour Integral Method

It is known that for an analytic function f of a square matrix A then f(A) can be
represented as a contour integral,

f(A) =
1

2πi

∫
Γ

f(z)(zI−A)−1 dz. (20)

where Γ is a closed contour lying in the region of analyticity of f and winding once
around the spectrum σ(A). Hale et al [12] found a better method to obtain f(A) be
computing A ·A−1f(A)

f(A) =
A

2πi

∫
Γ

z−1f(z)(zI−A)−1 dz. (21)

The algorithms proposed by Hale et al. [12] constructs the matrix f(A) rather
than the matrix function-vector product. The methods can be reworked to efficiently
determine f(A)b. The MATLAB code used in this paper is provided below

I = speye ( s ize (A) ) ;
uu = zeros ( s ize (A, 1 ) ,1 ) ;
m = e i g s (A, 1 , ’SM’ ) ; M = e i g s (A, 1 , ’LM’ ) ; % only f o r toy problems
k = ( (M/m) ˆ(1/4)−1) / ( (M/m) ˆ(1/4)+1) ; % Use fu l cons tant
L = −log ( k ) /pi ;
[K,Kp] = e l l i p kkp (L) ; % E l l i p t i c i n t e g r a l s
t = . 5 i ∗Kp − K + ( . 5 : J ) ∗2∗K/J ; % Midpoint r u l e po in t s
[ u cn dn ] = e l l i p j c ( t , L) ; % Jacobi e l l i p t i c f unc t i on s
w = (m∗M) ˆ(1/4) ∗ ( (1/ k+u) . / ( 1/ k−u) ) ; % Quadrature nodes
dzdt = cn .∗ dn . / ( 1/ k−u) . ˆ 2 ; % Der i va t i v e wrt t



for j = 1 : J
gamma = ( f (w( j ) ˆ2) /w( j ) ) ∗dzdt ( j ) ; % Node s p e c i f i c cons tant
uu = uu + (gamma∗ ( (w( j ) ˆ2∗ I−A) \b) ) ; % Solve us ing bac k s l a s h

end
sigma = −8∗K∗(m∗M) ˆ(1/4) ∗A/(k∗pi∗J ) ; % Sca l ing
uj = imag( sigma∗uu) ;

Code 1: Contour integral method adapted from method2.m [12]

3.3 Comparison of Methods

So far we have looked at two methods for approximating linear systems, the Lanczos
method and the contour integral method (CIM). Before proceeding into applying these
methods to linear and non-linear fractional diffusion equations a small comparison of
the effectiveness of these two methods shall be carried out.

Our A matrix is of sizeN×N and is constructed via MATLAB’s gallery(′tridiag′, N)
function. The Contour integral method (CIM) utilising MATLAB’s backslash operator
is compared against the Lanczos method with a deflation preconditioner. In Table 1
the Lanczos method uses the deflation preconditioner with 10 and 50 predetermined
eigenvalues and eigenvectors; however, CIM is significantly more efficient, especially as
the size of the system was increased.

Table 1 demonstrates that the condition number of the preconditioned Aα/2Z−1,
where Z−1 is the deflation preconditioner (16), was significantly lower than the condi-
tion number of Aα/2. This change is reflected in a reduction in the number of basis
vectors m needed by the Lanczos algorithm. For the contour integral method, 35 points
were used, it was determined that for systems with the dimensions in Table 1 (the N
column) that this was sufficient. The efficiency of the method was determined by the
runtime. For our 1-D problem, it is demonstrated in Table 1 the Contour Integral
Method is the preferred method for approximating matrix-function vector-products.



k = 10 CIM Lanczos Methods

N cond(A) cond(AZ−1) Time Accuracy m Time Accuracy

16 1.16e+02 1.97e+00 0.01 7.83e-14 7 0.00 1.22e-13
64 1.71e+03 1.45e+01 0.01 5.07e-12 40 0.01 5.06e-12
256 2.68e+04 2.22e+02 0.01 2.15e-10 162 0.09 2.21e-10
1024 4.26e+05 3.52e+03 0.02 1.26e-08 664 1.86 1.28e-08
4096 6.80e+06 5.62e+04 0.04 8.29e-07 2728 137.14 8.30e-07

k = 50 CIM Lanczos Methods

N cond(A) cond(AZ−1) Time Accuracy m Time Accuracy

64 1.71e+03 2.00e+00 0.01 5.07e-12 8 0.00 5.56e-12
256 2.68e+04 1.06e+01 0.01 2.12e-10 43 0.02 2.19e-10
1024 4.26e+05 1.64e+02 0.02 1.26e-08 181 0.18 1.29e-08
4096 6.80e+06 2.62e+03 0.04 8.28e-07 755 9.84 8.35e-07

Table 1: Comparison of CIM and Lanczos algorithm for computing Aα/2b where b is
the discretisation of x2(1 − x) exp(x). Deflation preconditioner of k = 10 and k = 50
was applied the Lanczos method.



4 Numerical Results

To test the effectiveness of our banded preconditioner we use a space-fractional diffusion
equation with a logistic growth source term on the finite domain 0 < x < 1 with
homogeneous Dirichlet boundary conditions.

∂u

∂t
= −κ(−∇2)α/2u+ u(1− u), u(x, 0) = x(1− x), κ = 0.1, α = 1.5 (22)

In Table 2 it is demonstrated that the banded preconditioner is effective at efficiently
reducing the runtime and RHS function evaluations. With N = 16384 and 285 F
evaluations and a minimum runtime of 37.4s with a bandwidth of 201. For N = 65536
has a minimum runtime of 259.7s with a bandwidth of 401.

In Table 2, N refers to the number of nodes used in our spatial discretisation.
Bandwidth is the bandwidth of our preconditioner used. Time is measured in seconds
and F evals refers to the number of evaluations of the right hand side function F from
Equation (2), this is significant due to requiring the approximation of Aα/2v that was
covered in Section 5.

N = 16384 N = 65536

bandwidth Time F evals Time F evals

– 5098.7 47059 99453 197907
41 65.1 592 1478 2799
101 38.6 333 574.2 1067
201 37.4 285 440.5 795

401 64.5 356 259.7 349

801 149.3 316 404.8 276

Table 2: Time taken and number of evaluations of F to generate approximate solutions
to Equation (22) from t = 0 . . . 5 with κ = 0.1 and α = 1.5 using the BDF-IVP solver
CVODE. Different bandwidths of the banded preconditioner are used with the Contour
Integral method used to evaluate f(A)b.



Figure 3: Evolution of equation (22) solved from t = 0 (dashed line) up to t = 5 with
α = 1.5 and κ = 0.1.

5 Conclusions

In this report we have developed a banded preconditioner for Krylov subspace meth-
ods with applications in space-fractional diffusion equations in one-dimension. The
preconditioner exploits the close relation between the fractional Laplacian and the
Riesz fractional derivative to form a banded matrix B that captured the significant
amount of physical processes within the discretised model. By acknowledging that
the most significant physical processes occurred around the diagonal of the discretised
fractional Laplacian Aα/2 we could maintain a relatively small bandwidth in B while
still capturing the most significant physical processes. We discretised our nonlinear
space-fractional diffusion equation using a finite difference method. We introduced the
Backwards Differentiation Methods as a means to handle the temporal discretisation
as well as the class of Jacobian-free Newton Krylov methods due to the nonlinearity
in our problem and the difficulty in explicitly solving the dense Jacobian. For eval-
uating the matrix-function vector-product Aα/2u we compared the Lanczos method
from the class of Krylov subspace methods as well as the Contour Integral method,
numerical tests demonstrated for our purposes, the Contour Integral Method was more
computationally efficient.

Numerical experiments confirmed that our preconditioner significantly accelerates
the convergence on GMRES methods while still being able to be easily factorisable
and applied to vectors. Without our preconditioner, experiments determined that
it was infeasible to determine numerical solutions on a reasonable timescale. Our



preconditioner also has the appealing characteristic that it is easily implemented into
modern high-order IVP-BDF software such as CVODE from the SUNDIALS suite. It
is also easily applicable to nonlinear cases where previous work is restricted to simple
linear cases.
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