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1 Introduction

In quantum field theory, the interactions between particles can be represented with a
Feynman diagram (Figure 1). To eliminate the inner vertices, the whole diagram can
be smoothed out to something along the lines of Figure 2. The boundaries at either
end represent the particles, or vector spaces, and the interactions between them are
represented by the object.

A Topological Quantum Field Theory (TQFT) takes some axioms from this physical
background and throws away extraneous information to form a mathematical theory.
It associates certain topological objects (cobordisms) with vector spaces. A Sutured

Figure 1: A Feynman diagram [6]



Figure 2: Smoothing out the Feynman diagram

Quadrangulated Field Theory (SQFT) is very similar, in that it associates other topo-
logical objects to vector spaces, but here the vector spaces are over the field Z2 with
two basis vectors. These two basis vectors somehow suggest information, as in 1’s and
0’s.

There is a certain function, β, which was explored due to the possibility of a
connection logic gates. Although nothing positive was discovered, the impossibility of
logic gates in certain situations was proven. There were also other interesting facts
about β that were explored.

2 Cobordisms

Definition 2.1. An n-dimensional manifold, M , is a topological space where every
point has a neighbourhood homeomorphic to Rn. Its boundary is denoted by δM .

Definition 2.2. A cobordism M between two manifolds (without boundary) of di-
mension n, Σ1 and Σ2, is a manifold of dimension n+ 1 such that δM = Σ1 ∪ Σ2

Definition 2.3. An oriented cobordism is when both the manifold and its boundaries
are oriented, in such a way as to have boundaries designated either in or out.

When we say cobordisms, we are actually refering to equivalence classes of cobor-
disms. Two cobordisms are in the same equivalence class if they are homeomorphic,
that is, one can be deformed into another.

In this project we are working with surfaces, otherwise known as 2 dimensional
cobordisms.



Figure 3: Joining together two cobordisms

Figure 4: From left to right, the cobordisms known as identity, multiplication, comul-
tiplication, unit and counit

2.1 Classification of Cobordisms

Two cobordisms, A and B, can be joined together by mapping some of the out bound-
aries of A to some of the in boundaries of B, as in Figure 3. As it turns out, all
connected cobordisms can be made from the set of cobordisms given in Figure 4.

Theorem 2.4. Connected cobordisms can be completely described by their genus, num-
ber of in boundaries, and number of out boundaries.

Proof. By the Classification Theorem of Surfaces [5], all orientable surfaces can be
described completely by their genus and number of boundaries. Oriented cobordisms
are complicated by their use of in and out boundaries, but by differentiating these we
are able to arrive at a complete classification.

Theorem 2.5. Any connected cobordism can be constructed from the composition of
the set of cobordisms given in Figure 4



Figure 5: Two cobordisms, one with 5 in boundaries and one with 0.

Proof. Consider a cobordism, M , with n in boundaries, m out boundaries, and genus
g. We will begin by constructing the pieces we need.

Firstly, add multiplication cobordisms together to form a piece with n in boundaries
and one out boundary, as shown in Figure 5. Caps are required for n = 0.

Use the same idea with comultiplication to form a piece with m out boundaries and
one in boundary (Figure 6). Now put together two pants as so, to form a torus with
two discs removed (Figure 7). Attaching g of these together will form a surface with
genus g (Figure 8) Now we can construct M by attaching each of these pieces together
(Figure 9).

3 Topological Quantum Field Theory

3.1 Category Theory

A category is a set of objects which have morphisms, or arrows, going between them.
Every object has an identity morphism, which is the morphism from an object to itself.



Figure 6: A cobordism with 4 out boundaries.

Figure 7: A cobordism of genus 1.

Figure 8: A cobordism of genus 3.



Figure 9: A cobordism of genus 3, with 5 in boundaries and 4 out boundaries.

There exists a binary operation, composition of morphisms, which is associative and
obeys f ◦ 1 = 1 ◦ f = f , where f is a morphism and 1 is the identity morphism
mentioned earlier. Some examples include:

• Sets, where the morphisms are functions from one set to another

• Groups, with homomorphisms being the morphisms

• Vector spaces under the field k, with linear transformations as morphisms

The category of cobordisms is known as ncob.

3.2 Topological Quantum Field Theory

Consider the category of Vector spaces, Vectk, over the ground field k and maps
between them, for example m : V ⊗ V 7→ k, where V is a vector space.

A Topological Quantum Field Theory, A, is a map from Vectk to nCob satisfies
the following axioms:

1. Topologically equivalent cobordisms, those in the same class, represent the same
map: M1

∼= M2 =⇒ A (M1) = A (M2)

=



2. The identity map is the cylinder

3. Composition of cobordisms goes to composition of linear maps: M1 ◦ M2 =
M3 =⇒ A (M1) ◦ A (M2) = A (M3)

4. Disjoint union goes to tensor product, eg V ⊗ V 7→ V

5. The empty boundary goes to the ground field k, eg k 7→ V

In category theory, numbers 1, 2 and 3 are equivalent to being a functor, and 4 and
5 mean monoidal. There is another axiom equivalent to begin symmetric. [2] Thus, a
category theoretic definition of a TQFT is:

Definition 3.1. A TQFT is a symmetric, monoidal functor from the category of (n-
dimensional) cobordisms, ncob, to vector spaces Vectk.

4 Sutures and Information Theory

Instead of cobordisms, we now work with occupied surfaces.

Definition 4.1. An occupied surface is an orientable surface with boundary, with
signed vertices on the boundary, alternating between positive and negative. [1]

On an occupied surface can be drawn sutures, lines which divide the surface into
positive and negative regions.

Definition 4.2. To quadrangulate a surface, we draw lines from vertex to vertex,
dividing the surface into squares. Lines are drawn between vertices of opposite sign.



Figure 10: Two simple sets of sutures for the square

The Euler class of a sutured, occupied surface is
∑
e+ − e−, that is, the Euler

characteristic of the positive regions minus the Euler characteristic of the negative
regions.

Definition 4.3. Euler characteristic of a connected oriented surface of genus g with
n boundary components is given by:

e = 2− 2g − n
Consider an occupied disc with four vertices, a square. There are two possible

suturings for it, excluding those with closed curves, shown in Figure 10.
These two squares have Euler class 1 and −1, respectively, and will be known as

1’s and 0. The names given are for to suggest links to information theory. The vector
space is over the field Z2, which has elements 0 and 1. To somewhat mitigate confusion,
these two squares will be given in bold while elements of the field Z2 will not be.

Definition 4.4. A quadrangulation is known as basic if each cell in the quadrangula-
tion is either a 1 or a 0.

Theorem 4.5. Every occupied surface has a basic quadrangulation, except in the case
of a disc with two vertices. [1]

4.1 Sutured Quadrangulated Field Theory

Consider a vector space with basis 1 and 0 over the field Z2. Let us call it V . This
vector space can be associated to an occupied surface in a similar way to how a TQFT
associates vector spaces with cobordisms.

Consider a quadrangulated occupied surface. A Sutured Quadrangulated Field
Theory associates this to the vector space V ⊗n, where n is the number of squares in
the quadrangulation of that occupied surface.

1 and 0 correspond to the two basis sutures from Figure 10. Elements in this vector
space V ⊗n correspond to different suturings of the surface.



Figure 11: The Bypass relation [1]

Figure 12: A sutured, quadrangulated disc, which is not a basic element of the vector
space.

4.2 Bypass Relation

Pictorially, the Bypass Relation looks like Figure 11.
There is a theorem in SQFT, where the above discs correspond to elements in the

vector space which sum to zero. It is also a method for manipulating the sutures in
order to represent a particular non-basic suturing as a sum of basic sutures, for example
in Figure 12.

What element of the vector space is represented by such a suturing? We can isolate

= +

Figure 13: Using the Bypass relation to solve the previous problem.



Figure 14: Two discs from the bypass relation forming a new disc

Figure 15: A function which takes two elements from the bypass relation to something
which is neither

part of the disc, then use the bypass relation to represent this element as a sum of
two other elements, as in Figure 13. We can see that our original disc is the element
0⊗ 1 + 1⊗ 0.

4.3 Logic Gates

The Bypass relation presents three types of discs, which could potentially be used as
the values True, False, and some sort of Indeterminate. The idea was to form a logic
gate from something similar to a cobordism (Figure 14). This can also be represented
as a disc with two holes (15). The sutures in this example do not form a logic gate.
As it turns out, it is impossible.

Theorem 4.6. Let the elements of the bypass relation denote the values True, False,
and Indeterminate. Let there be an occupied disc with one hole, and six vertices to
each boundary. Then there is no set of sutures such that a value can be entered into
the hole to give another value to the disc as a whole, giving a NOT gate.

Proof. Consider a suture originating on the inner boundaries. It can either end on the
same boundary or the outer boundary. If it ends on the same boundary, there will be



at least one value for which this forms a closed loop. None of the values have a closed
loop in them, so the suture cannot form closed loops.

Thus, all the sutures must go from the inner boundary to the outer boundary.
However, up to rotation, there is only one way to do this and it does not form a NOT
gate.

Theorem 4.7. Let the elements of the bypass relation denote the values True, False,
and Indeterminate. Let D be an occupied disc with two holes, and six vertices to each
boundary. Then there is no set of sutures such that two values can be entered into the
two holes to give a value.

Proof. None of the values have a closed loop in them, so the suture cannot form closed
loops. There are 6 possible slots in a boundary that sutures can begin and end on. A
suture which begins and ends on the same boundary takes up two slots, but one which
ends on a different boundary takes up only one. Thus there must be an even number
of sutures from any particular boundary ending on another.

Consider a suture originating in one of the inner boundaries. It can either end on
the same boundary, the outer boundary or the other inner boundary.

If it ends on the same boundary, there is the same argument as in Theorem 4.6.
Thus let us assume there are no sutures from an inner boundary to itself.

If it ends on the other inner boundary, in order to avoid sutures from an inner
boundary to itself, all the sutures from one inner boundary to the other must be in
a row. The other sutures must go to the outer boundary. Thus, there are only 4
possibilities, none of which is a logic gate.

5 Cylinders and β

Consider two sutured discs, Γ1 and Γ2, with the same number of vertices on the bound-
ary.

Place them at either end of a cylinder, face up, as shown in Figure 16. Now draw
lines on the sides, rotating by half each time in order to preserve sign. This describes



Figure 16: The function β

7→

Figure 17: Turning the cylinder into cubes.

a function, β (Γ1,Γ2). If the disc has corresponding vector space V ⊗n then β : V ⊗n ⊗
V ⊗n 7→ Z2. If the sutures are now homeomorphic to a single closed loop, β (Γ1,Γ2) = 1.
If there are multiple loops, β (Γ1,Γ2) = 0. Remember, the lack of bold here indicates
the numbers 0 and 1, not the elements of the vector space.

In this particular example, it is clear that there are multiple loops, so β (Γ1,Γ2) = 0.

6 Cubes

In an SQFT, an occupied surface can be represented as an element of the vector space
V . Instead of taking two discs and finding the value β takes by drawing sutures and
tracing around them, can we take two elements of the vector space V and determine
what β is?

One way of looking at this problem is to quadrangulate each disc into squares
(Figure 17). Then look at each resulting cube and find the corresponding β (Figure
18). Then glue the cubes together, knowing how this affects the value of β for the
whole.

It would be nice if, given any two Γ1 and Γ2, a particular quadrangulation could



Figure 18: Dividing into two groups.

be found which is simultaneously basic in both; however, a counterexample is shown
in Figure 19.

It is clear that there are only two distinct spots from which to begin an arc of
quadrangulation. In order for a quadrangulation to be basic, each arc may intersect
a suture of each colour only once. It is clear from the image that there is no possible
way to do this.

However, if we allow adding inner vertices to which the arcs of quadrangulation can
be anchored, we arrive at something known as a slack quadrangulation. It is clear that
there can always be a slack quadrangulation simultaneously basic in two discs, but is
there an algorithm by which we can find a slack quadrangulation with a small number
of slack vertices? Given a quadrangulation which is basic in both discs, can we find β?

A useful result which makes progress towards answering these questions is given
below.

Lemma 6.1. Let D be an occupied disc with quadrangulation, Q, and two sets of
sutures, Γ1 and Γ2. Suppose D decomposes into two discs along an arc of Q, such that
D = D′ t qD′′. Now we have sutures:

Γ′1 = Γ1 ∩D′
Γ′2 = Γ2 ∩D′
Γ′′1 = Γ1 ∩D′′
Γ′′2 = Γ2 ∩D′′

If β (Γ′1,Γ
′
2) = 1 and β (Γ′′1,Γ

′′
2) = 1, then β (Γ1,Γ2) = 1

Proof. The face at which the left surface is to be glued is shown on the left in Figure
20. There is only one possible way for the sutures to be drawn that results in the
surface having only a single loop; that is, β = 1. Similarly, there is only one way to
draw the shape on the right. When joined together, it is clear that there will be only



Figure 19: A disc which cannot be quadrangulated in such a way that the two sets of
sutures are simultaneously basic. Each set of sutures on the disc is represented with a
different colour.

Figure 20: This is a stylised drawing of two cubes, with only the faces to be joined
seen concretely; the other sides are not shown except for their sutures. The second
face is shown from behind.



Figure 21: This is a stylised drawing of two cubes, with only the faces to be joined
seen concretely; the other sides are not shown except for their sutures. The second
face is shown from behind.

Figure 22: A disc given by the element 1⊗ 0⊗ 0⊗ 1⊗ 0⊗ 1⊗

a single loop (Figure 21).

Given a linear quadrangulation, one can easily find β from the string of digits. A
linear quadrangulation is one where the disc is given by a string of 1’s and 0’s arranged
in a line, as shown in Figure 22.

Theorem 6.2. Given a linear quadrangulation and two elements of the corresponding
vector space, a = a1 ⊗ a2 ⊗ . . . ⊗ an and b = b1 ⊗ b2 ⊗ . . . ⊗ bn, β (a,b) can be found
from the following equation:

n∏
i=0

[
(−1)i (ai − bi) + 1

]
If the result is a 1, β (a,b) = 1 If not, β (a,b) = 0

Proof. Decompose the discs into their constituent 1’s and 0’s, so that now instead of
composing disc Γ1 with disc Γ2, you are now composing some string of 1’s and 0’s with



Figure 23: First type of zero cube, drawn with only sutures and face to be glued

another string of 1’s and 0’s. Now instead of a cylinder there is a string of cubes, all
joined together.

Remembering the order of these cubes, we now break apart the string of cubes and
consider each cube separately. We know that β (1,1) = 1, β (0,1) = 0, β (1,0) = 0,
and β (0,0) = 1.

By Lemma 6.1, if there is a sequence of cubes glued together for which β = 1, and
some other sequence for which β = 1, then glueing these two sequences together will
result in a sequence for which β = 1. (in fact, adding a β = 1 cube to anything does
not change it)

There are two types of cubes for which β = 0, that of Figure 23 and that of Figure
24.

With the first, it can be seen that glueing this to any sequence will add an extra
loop and so β = 0. The second type can be glued to itself to result in a sequence for
which β = 1. This cube, or in fact any combination of this cube and the β = 1 type,
the surface discussed above, can only look like Figure 24. When glued, the sutures will
form only one loop, as in Figure 25. Thus, if there are an odd number of the second
type there will be an extra loop and so β will be zero.

The first type of cube appears when there is a 1 above a 0 in an odd position, or
when there is a 0 above a 1 in an even position. The second occurs elsewhere.

Combining these ideas, an algorithm for discovering whether two given sequences
of numbers results in a cylinder for which β = 1 can be given:

1. List two sequences of 1’s and 0’s.

2. Pair the first number with the first, second with the second, etc.



Figure 24: Two type B zero cubes, side by side

Figure 25: Two type B zero cubes composed to form an object for which β = 0



3. If the two numbers are the same, write down a 0. If (1,0) write down a 1, and
if (0,1) write down a −1.

4. Multiply each number alternately by +1 and −1. That’s why previously (1,1)
and (0,0) were given the value of 0, so that they were not changed by this.

5. Add 1 mod 3 to each number.

6. Multiply together. Multiplying by 1 does not change anything, just as gluing a
(1, 1) or a (0, 0) does not change anything. Multiplying by −1 functions just as
glueing the second type of zero cube does, and multplying by 0 instantly gives
the whole thing a value of zero, like the first type of zero cube.

7. If the result was 1, β = 1, otherwise β = 0

These steps are equivalent to the formula given in the theorem.

7 Conclusion

In this project the idea of a TQFT and its relation to information theory was explored.
Topology, in particular surfaces, and category theory were introduced as background
for the SQFT discussed here. The exploration of β led to the results given here about
decomposition of cubes.

One area for further research is whether a logic gate could be found somewhere;
whether there is some sort of topological representation of logic. It also would have been
ideal to further generalise the decomposition into cubes, perhaps link it to quantum
groups or find a matrix representation, however due to time constraints this was not
possible.
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and most of all my supervisor Dan Mathews without whom none of this would have
been possible.
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