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In recent years, motivated largely by questions in developmental biology and tis-
sue engineering [1], there has been considerable interest in systems of interacting,
randomly-moving agents, including exclusion processes and more subtle inter-agent
interacting systems. The purpose of this project is to investigate interacting agent
systems in which agents occupying adjacent positions on a lattice are able to exchange
positions (further to simple exclusion) [1]. A previous area of research was the effect of
simple exclusion on multiple species systems [2]. This paper studies the effect of posi-
tion exchanges on multiple species agent systems and compares these effects with the
simple exclusion multiple species results. The project involves simulations, as well as
mean-field based continuum approximations leading to partial differential equations [3].

1 Introduction

A square lattice is populated by random walkers, who will be referred to as ‘agents’
from now on, with a concentration C. These agents are able to be referred to as ran-
dom walkers because they move in a sequence of random steps within the lattice [4].
This is a discrete-space, discrete-time agent-based model. An interacting agent system
is one in which the behaviour of a single agent, or group of agents, has an effect on
another agent, or group of agents [5,6]. Previously, interacting agent systems involving
simple exclusion have been explored [2, 5, 7, 8, 13]. In simple exclusion processes, for
any position on the lattice, no more than one agent can be occupying that particular



position at any time [2,5]. If another agent attempts to move into an occupied position,
the move is aborted (see Figure 1). Here, a one-dimensional problem is considered,
where agents have two possible directions of movement: left and right. The agents in
the system are directed by unbiased movement, defining the simple exclusion process
as symmetric [2, 7]. Define P to be the probability of an agent being able to attempt
to move, in this case there is probability P/2 of moving left and probability P/2 of
moving right. Defining P allows control over the level of activity of the agents. In all
simulations in this paper, P is defined to be 1 (maximum level of activity), in order
to highlight the different properties of each of the systems. Agent-based systems allow
the observer to track the movement of individual agents by tagging, or labelling, a
particular agent as well as the movement of the population as a whole [2, 5, 7, 9, 10].

Figure 1: Simple exclusion: (a) The blue agent in the middle position has equal chance
of moving left or right. Either direction results in a successful move. (b) If the blue
agent in the middle attempts to move right, the move is aborted due to the orange
agent in its way.

(a) (b)

An alternative to simple exclusion is to consider an interacting agent systems where
agent exchange is permitted to occur [1]. As in the simple exclusion case, agents are
distributed on a one-dimensional lattice and permitted to randomly walk, with P being
the probability that an agent is allowed an attempt to move. However, now if an agent
attempts to move into an occupied position, the agent has probability β of exchanging
positions with its neighbour, as opposed to having an aborted move (see Figure 2).
Biological motivation of this type of process has been explored previously [1]. In both
the simple exclusion and agent exchange cases, agents are only permitted to attempt
to move one lattice space at a time. Step sizes greater than one are not considered,
and hence the moves performed in these systems have local consequences.



Figure 2: Trading places: if the red agent attempts to move to the right, it has
probability β of swapping with the green agent.
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Figure 3: β = 1.0 (all swapping moves accepted)(a) Ten independent one-dimensional
lattices populated by a single species of agents. (b) Ten independent one-dimensional
lattices occupied by R and G species.

Due to the nature of swapping, it is desirable to consider the behaviour of subpop-
ulations [1, 2, 5, 11, 13], or different species, not only single species systems. A single
species of agents, C, can be defined as one where all agents behave in the same way (in
this case either by simple exclusion or by exchanging positions with other agents) and
are marked with the same ‘colour’ (as can be seen in Figure 3, above). Multi-species
are defined as two groups who, like single species defined previously, all behave in the
same fashion, however, are marked with different colours: red, R, and green, G. The
R and G groups are subpopulations of the total population, C, such that R+G = C.

(a) (b)

From average column occupancy statements, partial differential equations (PDEs)
describing the movement of populations and subpopulations can be obtained [1–3,12].
Independence of occupancy of neighbouring sites is assumed in this study and is crucial
to the conservation of mass arguments in the average column occupancy statements
used to derive the PDEs describing the movement of populations. If independence was



not assumed, correlation terms would need to be considered. Previously, it has been
shown that correlation terms cancel for simple exclusion processes [3]. However, this
may not be so for processes involving agent exchange. The presence of correlation terms
would be clear in the case that the PDE solution showed significant difference to the
simulation column averages. As the fit for the PDE solution compared to simulation
was quite good, the independence assumption is suitable for the purposes of this paper.

Microscale properties of interacting agent systems are of considerable interest.
Global population models for agent exchange in biological processes have been investi-
gated [1]. To investigate microscale properties, a single agent is tagged in a system of
agents (as opposed to subpopulations, where numerous agents are tagged and assigned
a species). The location of the tagged agent is monitored and characteristics, such as
the agent’s net displacement and sum of squares displacement, are noted. Considera-
tion of microscale behaviour is given in this paper.

2 Single Species

2.1 Derivation of Partial Differential Equations

Consider a one-dimensional lattice (all results given in this paper can be generalised to
higher dimensions, however, the focus of this paper will be on one-dimensional cases).
Let ∆ be the lattice spacing and τ be a time increment. In order to describe the
movement of a population, the change in occupancy at site i ∈ Z between time t
and t + τ must first be considered. Average column occupancy statements arise by
conservation of mass arguments (in these systems, the number of agents in the system
is constant) [7]. For simple exclusion, it has been shown that the change in occupancy
can be given by the master equation [7]:

Ci(t+ τ)− Ci(t) =
P

2
{[1− Ci(t)]Ci−1(t) + [1− Ci(t)]Ci+1(t)

− [1− Ci−1(t)]Ci(t)− [1− Ci+1(t)]Ci(t)}. (1)

Ci(t) in equation (1) represents site i being occupied at time t, and hence [1−Ci(t)]
represents site i being vacant at time t. The P/2 term represents the equal chance of
and agent moving left or right. In the braces on the right of equation (1) are terms
representing the possibilities of movement into and out of site i by an agent. Those
terms, from left to right, represent an agent at site i − 1 moving in to a vacant site



at site i, an agent at site i + 1 moving in to a vacant site at site i, an agent at site i
moving out to a vacant site at i− 1 and an agent at site i moving out to a vacant site
at i+1. The positive terms symbolise moves that would increase the occupancy at site
i and the negative terms symbolise moves that would decrease the occupancy at site
i. As the lattice considered is one-dimensional, Ci is equal to 1 or 0 (exclusively) at
any time. Since 0 ≤ Ci ≤ 1, equation (1) can be interpreted as a probability statement.

Equation (1) must be converted from a discrete to a continuous statement. In
order to make this conversion, let x = i∆ and t = kτ . Thus the discrete term Ci(t)
becomes the continuous variable, C(x, t) (further, Ci−1(t) becomes C(x − ∆, t) and
Ci+1(t) becomes C(x + ∆, t)). Taking Taylor series expansions, keeping terms up to
order O(∆2), gives:

Ci+1(t) = C(x, t) + ∆
∂C(x, t)

∂x
+

∆2

2

∂2C(x, t)

∂x2
+O(∆3), (2)

and

Ci−1(t) = C(x, t)−∆
∂C(x, t)

∂x
+

∆2

2

∂2C(x, t)

∂x2
+O(∆3). (3)

Making the appropriate substitutions, as described above in equations (2) and (3),
into equation (1) and simplifying terms yields:

Ci(t+ τ)− Ci(t) =
P∆2

2

∂2C(x, t)

∂x2
. (4)

Dividing equation (4) by τ , taking the limit as ∆, τ → 0 jointly and holding ∆2/τ
constant gives the PDE describing the movement for a population of agents in a simple
exclusion process [7] (C(x, t) will now be written as C for brevity):

∂C

∂t
= D0

∂2C

∂x2
, (5)

where

D0 =
P

2
lim

∆2,τ→ 0

∆2

τ
. (6)

Equation (5) is a linear diffusion equation. It is a parabolic PDE equivalent to the
one-dimensional case of the heat equation. The form of this equation is critical to the
success of its solution matching simulation results, as discussed in section 4, below.



2.2 Incorporating Agent Exchange

The master equation for agent exchange processes has the same terms as simple ex-
clusion, to incorporate movement, as well as additional terms to include swapping,
highlighted in red font in equation (7), below:

Ci(t+ τ)− Ci(t) =
P

2
{[1− Ci(t)]Ci−1(t) + [1− Ci(t)]Ci+1(t)− [1− Ci−1(t)]Ci(t)−

[1− Ci+1(t)]Ci(t)+β
[
Ci−1Ci(t) + Ci+1(t)Ci(t)− Ci(t)Ci−1(t)− Ci(t)Ci+1(t)

]
}. (7)

β represents the probability of a successful swapping move. The terms in the larger,
red, square bracket from left to right represent an agent at site i− 1 swapping with an
agent at site i, an agent at site i+ 1 swapping with an agent at site i, an agent at site
i swapping with an agent at site i − 1 and an agent at site i swapping with an agent
at site i + 1. Note that these terms cancel out, and therefore, including swapping in
the single species case does not alter the master equation, irrespective of the value of
β. Hence, the PDE describing the movement of a single species of agents in an agent
exchange process is the same as that for a single species simple exclusion process, the
diffusion equation (5).

3 Multiple Species

3.1 Simple Exclusion

In the situation that there are two species in the system, R and G, each species will
have a PDE describing the movement of the sub-population. For the simple exclusion
case, the master equation governing the movement of the R species is given by:

Ri(t+ τ)−Ri(t) =
P

2
{[1−Ri(t)−Gi(t)]Ri−1(t) + [1−Ri(t)−Gi(t)]Ri+1(t)

− [1−Ri−1(t)−Gi−1(t)]Ri(t)− [1−Ri+1(t)−Gi+1(t)]Ri(t)}. (8)

From left to right, the terms in the braces on the right of equation (8) represent
an R agent at site i − 1 moving in to a vacant site at site i, an R agent at site i + 1
moving in to a vacant site at site i, an R agent at site i moving out to a vacant site
at site i− 1 and an R agent at site i moving into a vacant site at site i+ 1. Note that
adding the R and G species equates to a single population, as described previously,



R + G = C. Using the same process as was described in section 2.1, it is found that
the PDE describing the movement of the R species [5] is:

∂R

∂t
= D0

∂

∂x
{(1−R−G)

∂R

∂x
+R

∂

∂x
(R +G)}. (9)

D0 is defined as in equation (6). The PDE for the G species can be obtained by
exchanging R’s and G’s in equation (9) (since both subpopulations have the same be-
haviour here). Equation (9), the equation governing the movement of subpopulations,
has key differences to the diffusion equation describing the movement of a single popu-
lation, equation (5). Equation (9) is not a parabolic PDE, it is an advection-diffusion,
or convection, equation with hyperbolic terms. The presence of hyperbolic terms is of
great importance in section 4. Summing the PDEs of the R and G species appropri-
ately produces equation (5). This is to be expected, as R +G = C.

3.2 Agent exchange

Including exchanging moves, the master equation for the R species has the same terms
to account for movement as in (8), with additional terms for swap moves, written in
red font in equation (10), below:

Ri(t+ τ)−Ri(t) =
P

2
{[1−Ri(t)−Gi(t)]Ri−1(t) + [1−Ri(t)−Gi(t)]Ri+1(t)

− [1−Ri−1(t)−Gi−1(t)]Ri(t)− [1−Ri+1(t)−Gi+1(t)]Ri(t)

+β
[
Gi(t)Ri−1(t) +Gi(t)Ri+1(t)−Ri(t)Gi−1(t)−Ri(t)Gi+1(t)

]
}. (10)

β is the probability of a successful swap (the same for each subpopulation). β = 0
represents the simple exclusion case and β = 1 represents all swapping moves being
successful. From left to right, the terms in the larger red square bracket of equation
(10) symbolise an R agent at site i− 1 swapping with a G agent at site i, an R agent
at site i + 1 swapping with a G agent at site i, an R agent at site i swapping with a
G agent at site i − 1 and an R agent at site i swapping with a G agent at site i + 1.
Using the techniques as described in section 2.1, the PDE describing the movement of
the population of R agents in a process including agent exchange is:

∂R

∂t
= D0

∂

∂x
{(1−R−G)

∂R

∂x
+R

∂

∂x
(R +G)+β(G

∂R

∂x
−R∂G

∂x
)}. (11)



Again, D0 is as defined in equation (6) and the advection-diffusion equation de-
scribing the movement of the G population is obtained by exchanging R’s for G’s and
vice versa. Summing the advection-diffusion equations for R and G species does result
in the diffusion equation for a single species, equation (5).

In the case that β = 1, the PDE describing the movement of the R population is:

∂R

∂t
= D0

∂2R

∂x2
. (12)

Equation (12) is a diffusion equation with no advection terms. β = 1 is the
only value of β that produces a diffusion equation with no advection terms in a sub-
population - this result is particularly important when comparing PDE solutions with
simulation results. Note that equation (12) is the same as equation (4), exchanging
C’s for R’s. This signifies that when all swapping moves are accepted, a subpopulation
of swapping agents will behave in the same way as a single population of agents in an
exclusion process.

4 Simulation

To gain insight into the processes involved in agent exchange and simple exclusion,
simulations were conducted using the numerical computing environment, MATLAB.
Agents were selected to move by random sequential update [5]. Random sequential
update is a process whereby an agent is chosen at random and is given the opportunity
to move. The agent moves with probability P . Irrespective of whether or not a move
was successful, another agent is selected at random, independently of the previous se-
lection. The independence of selections results in some agents being chosen to move
many times and others not at all. On average, agents will be chosen once per time
step. Define N to be the number of agents in a system. In any one time step, N
independent selections are made.

Simulations results required several (ten [example shown in Figure 3, section 1] or
twenty for block initial conditions and 100 or 200 for mirrored triangle initial condi-
tions) independent rows of one-dimensional simulations to be run simultaneously, with
a variety of different initial conditions tested (see Figures 4, 5, 6, 7 and 8). Block initial
conditions are those in which a certain number of columns, all grouped together all
have a uniform initial concentration, for example the columns 80 ≤ x ≤ 120 all having
an initial concentration of C = 0.2. Mirrored triangle initial conditions require one



subpopulation to have an initial concentration of a certain level at a starting column
and concentration decreases linearly for all subsequent columns, for example, the con-
centration of a red species being governed by the equation, C = 0.2− (0.0125)(x−80).
The term ‘mirrored’ refers to the fact that the other subpopulation (the green species)
will have the same initial condition in reverse, instead of having the initial concentra-
tion C = 0.2− (0.0125) ∗ (x− 80), (red species) the green species initial concentration
will be governed by C = (0.0125)(x− 80), this can be seen in Figure 8. The different
number of repeats for the different initial conditions in Figures 4, 5, 6, 7 and 8 reflect
the differing complexity and computing time for different initial conditions.

Column averages for every column were taken and plotted at times indicated in
the figures. PDE solutions were calculated using an in-built PDE solver and plotted
on the same graphs as the simulation results. Zero-flux boundary conditions were
implemented (thus, simulation times were restricted so as not to let agents reach the
boundaries of the lattice they are occupying). Figures 4, 5, 6, 7 and 8 (shown below),
compare the PDE solution with simulation column averages over many simulation runs.
Ideally, the PDE solution would match the simulations. For the single species cases
(shown in the first columns of Figures 4, 5, 6, 7 and 8), the PDE solution matches
the simulations results very well. This is because the PDE governing the movement
of a single species (the same for both simple exclusion and agent exchange cases) is
the one-dimensional heat equation (only parabolic differential terms are present). The
in-built PDE solver can solve the heat equation with a high level of accuracy. How-
ever, the equations governing the movement of subpopulations also contain advection
(hyperbolic) terms that the in-built solver cannot solve as well as pure diffusion. To
combat these effects, a number of different initial conditions were trailed. Different
initial boundaries and lower initial concentration of agents produced a better match
between simulation and PDE solutions (as seen when comparing Figure 4 and 5 with
Figures 5, 6 and 7).

The solution to the simple exclusion PDE (β = 0) in the multiple species case
is known to fit simulation results well up to high initial densities, from previous
papers [2, 5] (the simulations in referenced papers were completed using different
programs). Figures 6 and 7 have particularly small values for initial concentration
(C = 0.01), for values of C above 0.2, the PDE solutions given by the in-built solver
do not match simulations well. The issue regarding initial concentration remains to be
resolved. The solution is programming a PDE solver that can solve advection-diffusion
equations to greater degree of accuracy and allow more control over parameters. A user-



programmed solver would result in the simulation results and PDE solutions matching
better than the results seen in Figure 4 and 5 and at higher densities than those shown
in Figures 6, 7 and 8.

The only value of β for which comparisons between simulation results for subpopu-
lations and PDE solutions are particularly are poor are when β = 0. However, the PDE
solution not matching subpopulation simulations for the simple exclusion case does not
make results for other values of β invalid. The PDE solution matches the simulation
results better for non-zero values of β because advection terms have a smaller contri-
bution for these values. As discussed in section 3, β = 1 gives a diffusion equation with
no advection terms, and accordingly, the comparison between simulations and PDE
solutions when β = 1 produces a close fit. Developing one’s own PDE solver would
confirm the accuracy of the fit shown in Figures 4, 5, 6, 7 and 8 for non-zero values
of β. Note that independence of occupancy of sites could also contribute to a poor fit
between PDE solutions and simulation results. It is known that there is independence
of average column occupancy for β = 0 [5, 7], thus this assumption cannot account
for the poor fit for that particular value. On the other hand, the fair match for other
values of β show that the independence of occupancy of sites assumption is acceptable
for those cases.



50 100 150 200
0

0.5

1

x

C

50 100 150 200
0

0.5

1

x

C

50 100 150 200
0

0.5

1

x

C

50 100 150 200
0

0.5

1

x

C

50 100 150 200
0

0.5

1

x

C

50 100 150 200
0

0.5

1

x

C

50 100 150 200
0

0.5

1

x

C

50 100 150 200
0

0.5

1

x

C

50 100 150 200
0

0.5

1

x

C

Figure 4: Block initial conditions: G fully occupies 80 ≤ x ≤ 99, R fully occupies
100 ≤ x ≤ 119, t = 0, 100, 500, 1000, averaged over 500 repeats. PDE solutions
displayed in thick black line. Arrows indicate increasing time. (a) Sum of the R and
G sub-populations (equivalent to observing a total population), simulations displayed
in blue, thinner line. (b) R species, simulations displayed in red, thinner line. (c) G
species, simulations displayed in green, thinner line. (Increasing the value of β increases
the spread of the agents.)
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Figure 5: Block initial conditions: G occupies 80 ≤ x ≤ 99 with concentration 0.5,
R occupies 100 ≤ x ≤ 119 with concentration 0.5. t = 0, 100, 250, averaged over 100
repeats. PDE solutions displayed in thick black line. Arrows indicate increasing time.
(a) Sum of the R and G sub-populations (equivalent to observing a total population),
simulations displayed in blue, thinner line. (b) R species, simulations displayed in red,
thinner line. (c) G species, simulations displayed in green, thinner line.
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Figure 6: Block initial conditions: G occupies 80 ≤ x ≤ 99 with concentration 0.05,
R occupies 100 ≤ x ≤ 119 with concentration 0.05. t = 0, 100, 300, 500, averaged
over 10000 repeats. PDE solutions displayed in thick black line. Arrows indicate
increasing time. (a) Sum of the R and G sub-populations (equivalent to observing a
total population), simulations displayed in blue, thinner line. (b) R species, simulations
displayed in red, thinner line. (c) G species, simulations displayed in green, thinner
line.
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Figure 7: Mixed initial conditions: G and R occupies 80 ≤ x ≤ 120 with concentration
0.1, t = 0, 100, 300, 500, averaged over 10000 repeats. PDE solutions displayed in thick
black line. Arrows indicate increasing time. (a) Sum of the R and G sub-populations
(equivalent to observing a total population), simulations displayed in blue, thinner line.
(b) R species, simulations displayed in red, thinner line. (c) G species, simulations
displayed in green, thinner line.
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Figure 8: Initial conditions: Mirrored triangle (described above), t = 0, 100, 300, 500,
averaged over 250 repeats. PDE solutions displayed in thick black line. Arrows indicate
increasing time. (a) Sum of the R and G sub-populations (equivalent to observing a
total population), simulations displayed in blue, thinner line. (b) R species, simulations
displayed in red, thinner line. (c) G species, simulations displayed in green, thinner
line.
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5 Including Bias

5.1 Single Species

Consider equation (1), the master equation for a symmetric simple exclusion process.
Equation (1) can be generalised to incorporate bias in movement. Processes with bias
are no longer symmetric, they are asymmetric [2, 7]. In order to include bias, hence
converting equation (1) into its appropriate asymmetric form, the master equation
must include extra components to account for the weighting in the direction of moves.
The master equation for a single species simple exclusion process with bias on a one-
dimensional lattice, equation (1) transformed [7], is:

Ci(t+ τ)− Ci(t) =
P

2
{(1 + ρ)[1− Ci(t)]Ci−1(t) + (1− ρ)[1− Ci(t)]Ci+1(t)

− (1− ρ)[1− Ci−1(t)]Ci(t)− (1 + ρ)[1− Ci+1(t)]Ci(t)}, (13)

where the terms in blue are the terms added to equation (1) representing bias.
−1 ≤ ρ ≤ 1 determines the weighting of the bias. Negative values of ρ signify bias to
the left and positive values of ρ signify bias to the right. ρ = 0 states that there is no
bias (as in the systems mentioned in previous sections) [7]. Using the same technique as
described in section 2.1, the PDE describing the movement of the total population [7]
is:

∂C

∂t
= D0

∂2C

∂x2
− V0

∂

∂x
(C[1− C]), (14)

where D0 is defined as in equation (6) and V0 is defined as:

V0 = Pρ lim
∆,τ→ 0

∆

τ
. (15)

Agent exchange involves two agents (rather than one, as in a simple exclusion
move). This results in agent exchange being an inherently symmetric problem. Bias
cannot be introduced into swap moves as defined in this paper, since in a swap move,
one of the agents must move to the left and the other must move to the right, with
respect to their initial position, and all agents have the same probability of swapping.
It follows that for a single species, the master equation and resulting PDE governing
the movement of a population of agents allowed to perform agent exchange moves is
the same as that for simple exclusion bias case, equations (13) and (14).



5.2 Multi-Species

Considering multi-species, a difference exists between the simple exclusion and agent
exchange processes. The bias analogue of equation (8), simple exclusion multi-species,
is given by:

Ri(t+τ)−Ri(t) =
P

2
{(1 + ρ)[1−Ri(t)−Gi(t)]Ri−1(t)+(1− ρ)[1−Ri(t)−Gi(t)]Ri+1(t)

− (1− ρ)[1−Ri−1(t)−Gi−1(t)]Ri(t)− (1 + ρ)[1−Ri+1(t)−Gi+1(t)]Ri(t)}, (16)

where ρ has the same definition as previously and blue font indicates a term intro-
duced into equation (8) to incorporate bias. The PDE [2,5] resulting from this master
equation is:

∂R

∂t
= D0

∂

∂x
{R∂G

∂x
− [−1 +G]

∂R

∂x
} − V0

∂

∂x
{R[1−G−R]}. (17)

D0 is defined as in equation (6) and V0 defined by equation (15). As previously,
exchanging Rs for Gs and vice versa results in the PDE for the G species and adding the
PDEs for both species gives the single species PDE, equation (16). The bias analogue
of equation (10) is:

Ri(t+τ)−Ri(t) =
P

2
{(1 + ρ)[1−Ri(t)−Gi(t)]Ri−1(t)+(1− ρ)[1−Ri(t)−Gi(t)]Ri+1(t)

− (1− ρ)[1−Ri−1(t)−Gi−1(t)]Ri(t)− (1 + ρ)[1−Ri+1(t)−Gi+1(t)]Ri(t)

+ β[Gi(t)Ri−1(t) +Gi(t)Ri+1(t)−Gi−1(t)Ri(t)−Gi+1(t)Ri(t)]}. (18)

Leading to the PDE (by the process described in section 2.1):

∂R

∂t
= D0

∂

∂x
{[1− β]R

∂G

∂x
+ [1 + (−1 + β)G]

∂R

∂x
} − V ∂

∂x
{R[1−G−R]} (19)

= D0
∂

∂x
{R∂G

∂x
− [−1 +G]

∂R

∂x
+ β[G

∂R

∂x
−R∂G

∂x
]} − V0

∂

∂x
{R[1−G−R]} (20)

Note that ρ does not appear in terms that involve β, reflecting the lack of bias in
agent exchange moves.
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Figure 9: Block initial conditions: G occupies 700 ≤ x ≤ 749 with initial concentration
0.2 and R occupies 750 ≤ x ≤ 799 with initial concentration 0.2. t = 0, 100, 300, 500,
averaged over 200 repeats. ρ = −0.5 (left bias). PDE solutions displayed in thick
black line. (a) Sum of the R and G sub-populations (equivalent to observing a total
population), simulations displayed in blue, thinner line. (b) R species, simulations
displayed in red, thinner line. (c) G species, simulations displayed in green, thinner
line.
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6 Microscale Models

Thus far, the movement of populations have been considered. Another area of interest
is the movement of individual agents in the system. As previously, the system will in-
volve agents who all move in the same manner, with the same probability of movement
and agent exchange for every agent. Again the symmetric, unbiased case is considered
(ρ = 0). The one-dimensional lattice is randomly populated, with agent concentration
in the lattice denoted by C. From this system, an agent is selected at random and
‘tagged’. Tagging allows the observer to identify where the individual tagged agent is
at any time. The net displacement and sum of squares displacement for the agent for
different values of β are considered. Net displacement is calculated by [7]:

Xt −X0 =
t∑

k=1

(Xk −Xk−1). (21)

Xt denotes the position of the tagged agent at time t. In order to study statistical
fluctuations, the sum of squares displacement is also investigated. This is given by [7]:

St =
t∑

k=1

(Xk −Xk−1)2. (22)

It is known that in a simple exclusion process (β = 0), the sum of squares displace-
ment is density dependent and given by [5,7]:

St ≈ P (1− C), (23)

where C is the concentration of agents in the system. When C = 1 (full occupancy
of the lattice) and β = 0 (no swapping moves), St = 0; no individual agent is able to
move. This is shown in Figure 10(a), where simulation results are compared with the
line St = P (1− C).

Empirical results suggest that for 0 ≤ β ≤ 1, the movement of an individual agent
can be described by:

St ≈ P{(1− C) + 2βC}. (24)

These results can be seen in Figure 10. The factor of two in front of the βC term
arises due to there being two agents moving per swapping move. Thus, an agent
does not need to be selected to move in order to change position on the lattice. If a
neighbouring site is occupied, an agent may move positions by swapping without being
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Figure 10: Sum of squares slope (shown in blue) compared with its expected value
(shown in red). Averaged over 100 repeats. t = 500. (a) β = 0.0 (b) β = 0.25 (c)
β = 0.5 (d) β = 1.0

the random agent selected to move. If only half of the swapping moves are accepted,
on average, all agents will still swap once per time step in a crowded lattice. St is a
time-dependent parameter, simulation results show the slope of St, where the slope
of the curve is independent of time. That a successful agent exchange move always
involves two agents and is a symmetric process has a large influence on the behaviour
of individuals within the population.



7 Conclusion

Insight has been gained into agent exchange systems on a macroscale and mircoscale
level. It has been found that including agent exchange in a simple exclusion process
does not have any affect on the movement of the total population. However, when
considering subpopulations and the movement of individual agents, agent exchange
has a dramatic effect. For a finite one-dimensional lattice fully occupied, with agents
obeying simple exclusion, colouring the left half of the population red and the right half
green, observations at any time would show the same result - there is no movement.
On the other hand, if agents are permitted to swap places, there is a lot of movement
and the red and green become evenly mixed over time. If all swapping moves are ac-
cepted, then the sub-populations behave in the same manner as a single population of
simple exclusion agents. On the microscale, introducing agent exchange allows much
greater movement of individual agents. Future work would involve developing a PDE
solver that can solve advection-diffusion equations with greater accuracy, resulting in
PDE solutions matching simulations more closely and examining correlation between
occupancy of lattice sites for agent exchange processes.

The moves in this paper have had local consequences as each step size for moving
and swapping is equal to one. To generalise swapping and simple exclusion moves
to any step size, d ∈ N, would have a profound effect on the PDEs governing the
movement of populations, as well as individuals within the population. It would be
expected that when d > 1 the populations would spread much more quickly than the
case considered here, where d = 1.

Though it has been shown that agent exchange is a symmetric process involving
two agents, breaking a population into smaller populations (say three or four sub-
populations) and giving different weights to successful swaps would produce new and
interesting results (in this paper, the same weighting has been given to each subpop-
ulation). Allowing more than one agent to occupy a lattice site could also potentially
be of interest. A number of different unexplored rules could be trialled, each with
differing applications. For future research, the possibilities are endless.
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