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1 Introduction

Special functions arise in the study of differential equations which are of particular importance
in areas such as applied mathematics. I considered Sturm-Lioville problems as many special
functions are solutions to these problems. An important property is that the solutions to Sturm-
Liouville problems form an orthomormal basis in a Hilbert space. Also this is a complete basis
and so all the results from Fourier theory can be generalised to these classes of special func-
tions. Since Sturm-Liouville problems typically arise when solving partial differential equations
by separation of variables, I considered Laplace’s equation uxx + uyy + uzz = 0 and the wave
equation utt = uxx + uyy + uzz in spherical coordinates.

It is no surprise that solutions involve special functions of the separated variables. When con-
sidering a spherical structure and imposing boundary conditions a typical series equations that
arises is

�∞
n=0 anPn(cos θ) = f(θ), 0 < θ < π. Legendre polynomials are solutions to Legen-

dre’s equation which is a Sturm-Liouville problem, the above series equation can be solved by
expanding f(θ) in terms of Fourier-Legendre series. We begin by exploiting orthogonality of
Legendre polynomials to obtain f(θ) =

�∞
n=0 fnPn(cos θ) where fn =

� π
0 f(θ)Pn(cos θ) sin θdθ.

Solution follows by comparing coefficients.

Naturally I progressed to studying more complicated boundary conditions, focusing on mixed
boundary conditions. It turns out that solving the above problems but instead with an open
spherical structure leads to mixed boundary conditions that instead of a series equation we
obtain dual series equations. One of the simplest example of a dual series equation is

∞�

n=0

anPn(cos θ) = 1, 0 < θ < θ0,

∞�

n=0

(2n+ 1)anPn(cos θ) = 0, θ0 < θ < π

where θ0 is a given constant, coefficients an are to be determined.



As I quickly discovered, problems of this form cannot be solved accurately by direct means.
Applying orthogonality simply gives an ill-conditioned matrix system. The philosophy when
solving ill-conditioned problems reformulate the original problem. For dual series equations
there is a method called the Abel transformation method that changes to problem in a way
that it gives an infinite matrix system that is well-conditioned.

2 Mixed boundary value problems

I shall briefly introduce the two most basic mixed boundary problems that give rise to dual
series equations involving special functions. The dual series equations will be quoted and for
further detail on their derivation refer to [1] & [2].

2.1 The open conducting spherical shell

We consider solving Laplace’s equation uxx + uyy + uzz = 0.
Applying appropriate mixed boundary conditions, the following dual series equations arises
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∞�

n=m

(2n+ 1)Am
n P

m
n (cos θ) = 0, 0 < θ < θ0 (2.2)

where θ0 is a given constant and A
m
n are coefficients to be determined.

2.2 Plane wave diffraction from a hard spherical cap

We now consider solving Helmholtz equation (∆+ k
2)U t = 0.

Applying appropriate mixed boundary conditions, the following dual series equations arises
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∞�

n=m

i
n(2n+ 1)

(n−m)!

(n+m)!

a
m
n

h
(1)�
n (ka)

P
m
n (cosα)Pm

n (cos θ) = 0, θ0 < θ < π (2.4)

where θ0 is a given constant and a
m
n are coefficients to be determined.

3 Abel transformation method

The dual series examples in sections 2.1 and 2.2 can be viewed as particular examples of the
more generally defined dual series

∞�

n=0

λn(α,β; η)xn(1− rn)P
(α,β)
n (t) = F (t), −1 < t < t0 (3.1)

∞�

n=0

xn(1− qn)P
(α,β)
n (t) = G(t), t0 < t < 1 (3.2)



where coefficients xn are to be determined, t0 is a given constant, F (t) and G(t) are given

functions, rn → 0 and qn → 0, and also λn(α,β; η) =
Γ(n+α+1)Γ(n+β+1+η)
Γ(n+α+1−η)Γ(n+β+1) .

The Abel transformation method uses Abel integral representations of special functions (here
Jacobi polynomials) to rewrite the dual series equation into a series equation. Observe that
due to the coefficient λn (3.1) is a slower converging series that (3.2), so in this process (3.1) is
integrated in the process. For details on this transformation process see chapter 2 of [1].

What is important to note with this procedure is that it reduces the problem to an infinite
system of linear equations that is well-conditioned under truncation.

4 Numerical solution

In this section I shall simply quote the results obtained by carefully analysing the dual series
equations in sections 2.1 and 2.2 as special cases of (3.1) and (3.2). Note that the dual se-
ries equations in (2.1) and (2.2) involve the associated Legendre polynomials not the Jacobi
polynomials. There are formulae that relate these two polynomials.

4.1 The open conducting spherical shell

Solution is given y
m
p+m =
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So in the case of the conducting spherical shell an analytic solution exists.

4.2 Plane wave diffraction from a hard spherical cap

Here the infinite system doesn’t reduce to an anlytic solution. The details of the matrix system
shall be omitted as they can be found in chapter 2.1 of [2]. For illustrative purposes denote this
matrix as A. Matlab code can be written to compute values of the above matrix system, some
special care is required particularly when considering different values of ka and Ntr (truncation
number). Note that with special functions such as the Bessel functions, asymptotic behaviour
leads to situations where computation involves a zero times an infinity. When using Matlab
codes it is appropriate to consider when Ntr ≤ 10ka as to avoid these asymptotic behaviour.

Consider ka = 20, the plot of the condition number of matrix A is shown below
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As the above clearly demonstrates, the matrix A is well-conditioned, in that the condition
number is converging for large truncation numbers. We can expect solutions to the truncated
matrix system to lose 2 significant figures.

5 Conclusion

As demonstrated solving dual series equations requires different treatment than solving series
equations. Infinite matrix systems arising involves computing values of special functions which
require some care is needed to ensure that computed values are accurate.

Appendix

Gamma function Γ(z) has integral representation

Γ(z) =

� ∞

0
e
−t
t
z−1

dt, z ∈ R

Γ(n) = (n− 1)!, n ≥ 1

Jacobi polynomials P (α,β)
n (x) are solutions to the following ODE

(1− x
2)y�� + (β − α− (α+ β + 2)x)y� + n(n+ α+ β + 1)y = 0

Legendre polynomials Pn(x), a special case of the Jacobi polynomials (for α = 0,β = 0) are
solutions to the Legendre equation

(1− x
2)y�� + 2x)y� + n(n+ 1)y = 0

Associated Legendre polynomials Pm
n (x) are solutions to the more general Legendre equation

(1− x
2) y�� − 2xy� +

�
n[n+ 1]− m

2

1− x2

�
y = 0

Bessel functions Jν(z) - 1st kind and Yν(z) - 2nd kind are independent solutions to the ODE

x
2
y
�� + xy

� + (x2 − ν
2)y = 0

Hankel functions H(1)
ν (z) = Jν(z) + iYν(z) is another solution the Bessel’s equation.

Spherical Bessel functions take the form

Kν(z) =

�
π

2z
K

ν+
1
2
(z)

where K(z) is any Bessel function.
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