
Application of approximate Bayesian computation to
estimate parameters in models of infectious disease

spread on a network

Brock Hermans

February 28, 2013

Contents

1 Introduction 2

2 Bayesian statistics 2

3 Markov Chain Monte Carlo methods 4
3.1 Metropolis-Hastings algorithm . 5
3.2 Approximate Bayesian computation . 6
3.3 Kernel Density Estimation . 7

4 Semi-automatic ABC 9

5 SEIR Model 11
5.1 Data and simulation for the SEIR Model 13
5.2 Gillespie algorithm . 14
5.3 Problems with applying ABC to SEIR model 14

5.3.1 Applying Semi-automatic ABC to SEIR model 14

6 Conclusion 15

1 Introduction

In many epidemiological studies one of the key questions we want to ask is, what is the
infectivity rate of a particular disease? That is, at what rate do people become infected
by a disease. Knowing such information can help us to implement strategies in order
to prevent a disease from spreading through a population. This report will lay the
foundations for a study into a disease spread on a network of nodes, or people. In the
report we will look at approximate Bayesian computation (ABC); a method in which
we can estimate the parameters of a model. In addition, we will look at some of the
new research into ABC methods. We will then attempt to apply ABC to a particular
SEIR model; a continuous time Markov chain model which uses three parameters to
describe how a disease can move through a population. We will finish by examining
some of the difficulties in applying our ABC method to the SEIR model.

2 Bayesian statistics

Bayesian statistics is a school of thought that interprets the broad idea of ‘statistics’
differently from the more well known Frequentist statistics (which involves unbiased es-
timators, confidence intervals and p-values). In its most general form, Bayesian statis-
tics formalises the scientific principle of having a hypothesis, collecting some data, and
then updating your hypothesis, based on the data you collected. It’s origins lie in the
famous Bayes’ theorem, which states:

Theorem 1. Consider events A and B.

P (A|B) = P (B|A)P (A)
P (B)

,

if P (B) > 0.

The theorem, named after the famous English mathematician Thomas Bayes (1701-
1761), is fundamental to Bayesian statistics. Consider reformulating Bayes’ theorem
in the following way. Suppose we have some experiment, which we believe can be
modelled by the set of parameters, θ. Let us also suppose that we observe some set
of data, y. We now wish to update our belief about θ, which we can do using Bayes’
theorem. Suppose that we have the probability model f(y|θ) and that our belief about
the set of parameters can be given by π(θ), which we call the prior density. Using
Bayes’ theorem we have:

π(θ|y) = π(θ)f(y|θ)∫
π(θ)f(y|θ)dθ

[Christensen et al., 2011]

By noticing that f(y|θ) is the likelihood of the data y (likelihood is equivalent to the
probability of observing the data given a set of parameters θ) and the integral on the
denominator is simply a constant (normalising constant), then we interpret the above
formula as

posterior ∝ prior × likelihood.

Here our posterior density, π(θ|y), is a summary of our beliefs about the parameter θ
after having observed some data, y. This fundamental idea is rejected by some Fre-
quentist statisticians, however we won’t go into the Bayesian vs Frequentist debate.
What we will say however is that Bayesian statisticians view parameters of a model as
random variables. These random variables can be updated via Bayes’ theorem, and the
concept of probability is a measure of personal belief. On the other hand, Frequentist
statisticians view parameters of a model as unknown constants that can be estimated
using unbiased estimators and confidence intervals. Because of this, Frequentist statis-
ticians need to recalculate their estimate every time they gain some new information,
rather than simply updating their belief as a Bayesian statistician would.

Because of this difference of interpretation, we have the Bayesian version of confidence
intervals (credible intervals) and p-values (Bayes’ factors). We will not discuss how to
calculate credible intervals and Bayes’ factors, but we will say that they are used in
inference and will be discussed later.

To get a better understanding of Bayesian statistics, we consider the following example.
Say we have a coin and we want to calculate the probability of a head, p. We are told
that after 20 tosses we have 2 heads. In this case our prior would be a standard
uniform, as the only thing we know about p is that it is a probability and thus lies
between 0 and 1 (a belief that is contained in a standard uniform density). Calculating
our posterior density, we get a beta density with parameters α = 3 and β = 19.

Figure 1: Plot of the prior (in black) and posterior (in red) for the coin example.

From the above plot we can see that observing the data, y, we get a better idea of the
region in which the parameter (p) lies. Using the standard number of successes

number of trials
method we

get an estimate for p as 0.1, and it should be noted that the posterior density has a
peak around 0.1. We will refer to this coin example throughout the report as a frame
of reference.

3 Markov Chain Monte Carlo methods

One of the problems with Bayesian statistics is that for most real-world problems the
normalising constant is extremely difficult to compute. However, in the 1980s a new
method for estimating the posterior density that bypasses the normalising constant
was developed with the introduction of Markov Chain Monte Carlo methods. This
method, known as the Metropolis-Hastings algorithm, allows us to sample from the
posterior without having to calculating the normalising constant. The idea behind

Metropolis-Hastings is to construct a Markov chain whose stationary distribution is
the posterior of interest. We can then take a sample from this chain (after it reaches
this stationary distribution) and that sample should be the same as the sample we
would get from the posterior.

However, an even more powerful method, approximate Bayesian computation, does
not require the calculation of the likelihood, unlike the Metropolis-Hastings algorithm.
We will briefly explain the Metropolis-hastings algorithm and then move onto the
approximate Bayesian computation algorithm.

3.1 Metropolis-Hastings algorithm

The idea behind Metropolis-Hastings is to start with some initial guess for the pa-
rameters θ, generate a new value of θ from a proposal distribution (where ideally the
proposal distribution ‘mimics’ the posterior) and then accept the generated value with
a certain probability. The algorithm is defined below:

• Step 1: Initialise (guess) θ1

• Step k : [k = 2, ..., n]

1. Generate θ∗ from the proposal density h(θ∗|θk−1)

2. Define α(θ∗, θk−1) = min
{

1, π(θ∗)f(y|θ∗)h(θk−1|θ∗)
π(θk−1)f(y|θk−1)h(θ∗|θk−1)

}
3. Simulate U ∼ U(0, 1)

4. If U ≤ α then θk = θ∗

Else θk = θk−1

We should end up with a series of dependent estimates for our parameters that are
themselves samples from the posterior (assuming we reached the stationary distribu-
tion). Notice however that we still need to calculate the likelihood in the Metropolis-
Hastings algorithm. We now want to consider an algorithm that doesn’t require the
likelihood.

3.2 Approximate Bayesian computation

The problem we mentioned earlier is that the likelihood function might be unknown
(or at least computationally difficult to evaluate). Approximate Bayesian computation
(ABC) is an algorithm that, like the Metropolis-Hastings algorithm, estimates the
posterior density by generating values that are samples from the posterior. One of
the key differences however is that unlike Metropolis-Hastings, ABC does not require
the calculation of the likelihood, which means it can be applied to a wider range of
real-world applications.

Like before, we assume to have a prior density and some data y. We then follow the
basic steps:

1. Choose a set of summary statistics, S. Calculate S(y).

2. For k = 1, ..., n

(a) Simulate θ∗ from the prior

(b) Use θ∗ to simulate some artificial data, x. Calculate S(x).

(c) If |S(x)− S(y)| ≤ ε accept θ∗.

(d) Else reject θ∗ and repeat 2 (a) to 2 (d)

[Majoram et al., 2003]

The best summary statistic function, S, to use is a function that simplifies the data
without loosing information. These kind of summary statistics are called sufficient
statistics. Conceptually, the idea of sufficiency means that if one person has the data
and another has the sufficient statistic, they would both reach the same conclusions
when forming credible intervals, posterior density, etc. With regard to the coin exam-
ple, the number of heads is a sufficient statistic.

Another thing to note is that we also haven’t defined what ε is. Like summary statis-
tics, we look at the value of ε on a case-by-case basis. What we should say however
is that if ε is large then we will be accepting more θ∗ values and if ε is small then the
values of θ∗ that we accept will be a more accurate estimate of θ. The choice of ε is
therefore a trade off between accuracy and computability.

If we apply ABC to the coin example and then do a histogram of the values θ∗ that
we kept, we get the plot shown below.

Figure 2: Histogram of theta values retained for the coin example. The red line is the
true posterior we calculated earlier.

From the above plot we can see that the results we get from ABC are quite close to
the true posterior.

3.3 Kernel Density Estimation

At the end of the ABC algorithm and Metropolis-Hastings we are left with a series of
estimates for θ. The natural question to ask then is how can we estimate the posterior
from these values? The solution lies in Kernel Density Estimation. [Silverman, 1986]

To estimate the posterior, we place all of the accepted θ∗ values on an x-axis and
over each of them we draw a density. We can use any density (a square for example
would do) so long as the density integrates to 1. We then sum the parts in which the
densities overlap and that should give us our estimate of the posterior. One thing we

have to specify is the band width (or variance) of the density. For the coin example we
use a Gaussian, or normal, density and found that a bandwidth of 0.02 worked best
(although there are functions in R Studio [R Core Team, 2012] that will calculate this
band width automatically, such as the ‘density’ [R Core Team, 2012] function).

Figure 3: This figure plots a histogram of the theta values we get from applying ABC
to the coin example as well as plotting the kernel density estimation with a

bandwidth of 0.02.

Figure 4: This figure plots a histogram of the theta values we get from applying ABC
to the coin example. The red line is the result of kernel density estimation with a

bandwidth of 0.002 and the green line has a bandwidth of 0.2.

Figure 3 highlights the accuracy of kernel density estimation with an appropriate band-
width. Figure 4 however shows us the error in choosing a bandwidth too small or too
large. The green line has a bandwidth of 0.002 and is too rough, whereas the red line
has a bandwidth of 0.2 and is not an accurate representation of the posterior.

4 Semi-automatic ABC

A new paper by Paul Feanhead and Dennis Prangle (‘Constructing summary statis-
tics for approximate Bayesian computation’ [Fearnhead and Prangle, 2012]) published
last year considers some new methods in ABC. We will focus on their so-called Semi-
automatic ABC, which is a method for constructing appropriate summary statistics.

In the paper, they argue that “we wish to choose summary statistics that are equal to
posterior means” [Fearnhead and Prangle, 2012], and we can estimate these summary
statistics via the following algorithm:

1. Use a pilot run of ABC to determine a region of non-negligible posterior mass

2. Simulate sets of parameter values and data

3. Use these simulated sets of parameter values and data to estimate the summary
statistics

4. Run ABC with this choice of summary statistics.

[Fearnhead and Prangle, 2012]

This method works on the logic that summary statistics are functions of the data, and
so we are using simulated data to write the summary statistics in a particular form
and then use the actual data to estimate the summary statistics.

Step 1 is not necessary if we have a relatively informative prior (a prior that tells us
something about the parameters). The reason for Step 1 is simply to reduce the area
that we are looking in. For the coin example we could skip this step, as the area
we are looking in is relatively restricted (restricted to between 0 and 1). Step 2 is
identical to the steps we take in normal ABC, except in Semi-automatic ABC we make
no decision about rejecting or accepting the simulated values. Step 3 is the key step in
Semi-automatic ABC. The authors suggest that linear regression is the best method.
To apply step 3 to the coin example we first show how we represent our data generated
in step 2:

p T1 T2 ... T20
.
.

The above table is a representation of step 2, where the first column contains all the
simulated values for p. Column 2, T1 is representing the ‘first toss’, where a 1 represents
a head and a 0 represents a tail. We continue this for 20 tosses. We then write

p = β0 + β1T1 + ...+ β20T20

and estimate the β values. Then we substitute T1, ..., T20 for the values we get in the ob-
served data, y and get an estimate for p, which we then use in our normal ABC method.

One of the problems we will see later is that this method requires a very specific and
well-defined definition of our ‘data’. Now that we have multiple ABC methods, we
consider a model we wish to apply them to.

5 SEIR Model

There are a number of different ways in which we can model how an epidemic moves
through a population. We will consider the continuous-time SEIR Model. This model
splits a population of people into one of four categories; susceptible, exposed, infective,
and recovered.

S E I R

Figure 5: A depiction of how subjects can move through the system

S E I R

This model is based on the idea that certain infections have 4 stages; first you don’t
have the disease, then after adequate contact with an infectious person you have been
exposed to it (so you will develop the disease, but are not yet contagious), then you are
infectious, and then you recover. Figure 5 presents how an individual moves between
these 4 categories or groups. We will consider the epidemic to have ended or died-out
when there are no individuals in either the exposed or infective group.

The goal of this project is to be able to take some real data and use our ABC algorithm
to estimate the rates at which people move from one group to another. Before we can
even start to think about applying the ABC algorithm to our SEIR model we first have

to define our parameters of interest.

We mentioned above that this model was a continuous time Markov chain. It is in
continuous time because at any given time we consider the state of the system (s, e, i)
to be the number of people in the susceptible, exposed and infective group. At any
given time, a change to this system may occur, thus it is a continuous time model.
Note that we don’t record the number of people in the recovered group; this is because
that group is relatively uninteresting, and so we consider an individual to be outside
of our study once they reach the recovered group. This system is a Markov chain,
because we limit the changes to the system (s, e, i) to one of the following:

1. (s, e, i)→ (s− 1, e+ 1, i) [a susceptible becomes exposed] @ rate βsi
N

.
(NB: N = s+ e+ i at the start of the epidemic)

2. (s, e, i)→ (s, e− 1, i+ 1) [an exposed becomes infectious] @ rate σe.

3. (s, e, i)→ (s, e, i− 1) [an infectious recovers] @ rate γi.

So at a random time, any one of these changes can occur, according to the parameters
β, σ and γ. The first change has rate βsi

N
because there are two things governing the

rate at which a susceptible moves to the exposed group. Firstly, the rate at which a
susceptible moves out of the group is proportional to s

N
. However we need the i in the

formula as the more infectives there are then the higher the chance is that a susceptible
will become exposed to the disease. Changes 2 and 3 have rate σe and γi for more
or less the same reason; because the exposed have to move to the infective group and
the infectives have to move to the recovered group before our study is over (i.e. their
transition to the next group is a matter of time only). Then the rate at which they
move out is simply proportional to how many people are in that group at a given time.

The aim of this project was to apply ABC to the SEIR model in order to estimate
these values of β, σ and γ, given a set of data, y. However, in order to apply ABC to
the SEIR model we need a way of taking some simulated values for θ = (β, σ, γ) and
generating some data; this requires a clear definition of what we consider data to be
in regards to an epidemic.

5.1 Data and simulation for the SEIR Model

For the purpose of this project we consider data to be a matrix in the following
form:

s e i 0
s1 e1 i1 t1
. . . .
. . . .
. . . .
sn 0 0 tn

The first line of the matrix hold the number of individuals in each group at the start
of the epidemic. Then, the rows record each change and the time at which it oc-
curred. We continue this until we get no one in either the exposed or infective group,
and finally record the number of susceptibles and the time at which the epidemic ended.

Now we come to how we can simulate data in the above form, given a set of simulated
parameters for θ = (β, σ, γ). To do this, we consider the following:

1. T1 ∼ exp(βsi
N

)→ random time until next event 1

2. T2 ∼ exp(σe)→ random time until next event 2

3. T3 ∼ exp(γi)→ random time until next event 3

Using simulation, we now have a framework with which to generate our artificial data.
One possible way to do this is to simulate from T1, T2 and T3. This would give us
the next time at which each of the events occur. We could then find the minimum
time, work out which event occurred and then update our system. It might seem
obvious to then go to the next minimum and update our system again. However, due
to the exponential property we would have to re-simulate from T1, T2 and T3 and again
find the minimum. However, if we are looking at 20 possible changes over the course
of the epidemic, and doing three simulations per change, then we have a total of 60
simulations. This is very computationally inefficient and so we would like a simpler
method for calculating which changes occur, and at what time.

5.2 Gillespie algorithm

The Gillespie algorithm is a method that we can use to simulate the time until the next
change and then work out which change occurs. It works by using only one simulation
to find the time until the next change and then calculates which change occurs.

1. min{T1, T2, T3} ∼ exp(βsi
N

+ σe+ γi)

2. Choose the next event to occur

Event 1 occurs with probability
βsi
N

βsi
N

+σe+γi

Event 2 occurs with probability σe
βsi
N

+σe+γi

Event 3 occurs with probability γi
βsi
N

+σe+γi

3. Update (s, e, i) accordingly. Repeat until e = 0 and i = 0.

[Gillespie, 1977]

The Gillespie algorithm now gives us a framework with which to efficiently generate
data, given a simulated value for θ = (β, σ, γ). Now we discuss some of the difficulties
with applying the ABC algorithm to the SEIR model.

5.3 Problems with applying ABC to SEIR model

The only thing we don’t have in place yet is an appropriate set of summary statistics.
One might think that the best summary statistics to use would be things like, the
number of susceptibles at the end of the epidemic, the number of changes that occurred,
the length of the epidemic, the peak number of infectives and exposed and the times at
which these peaks occurred. Implementing ABC with this choice of summary statistics
gives extremely volatile results and as such, we look to other methods for choosing
summary statistics.

5.3.1 Applying Semi-automatic ABC to SEIR model

Before, we discussed Semi-automatic ABC however it is not appropriate for the SEIR
model. The reason is because we need a clear definition of data in Step 3 of the Semi-
automatic algorithm. As it stands, our data in matrix form is not suitable for linear

regression.

One possible solution to define the data as follows:

γ s e i 0 s1 e1 i1 t1 s2 e2 i2 t2 ... s10 e10 i10 t10
.
.

So here, we limit the number of transitions to 10. When we run the algorithm and get
less than 10 transitions we simply replace the values for s, e and i for N/A. Now we can
do the linear regression similar to how we did it in the coin example. The problem we
found with this method is that there was too much confounding between the predictor
variables, and so we concluded that we cannot apply Semi-automatic ABC to the SEIR
model either.

6 Conclusion

Our aim in this project was to lay the foundations for a study into a disease spread on
a network of nodes, or people. Within that, we have considered some basic Bayesian
statistics and looked at the ABC algorithm which allows us to estimate parameters of
a model. We focused on some of the new ABC methods developed by Paul Fearnhead
and Denis Prangle, specifically Semi-automatic ABC. We looked at the SEIR model
which is the model we used to describe how a disease can move through a population.
We finally looked at some of the difficulties in applying Semi-automatic ABC to the
SEIR model. Future work would focus on further research into choosing appropriate
summary statistics for the SEIR mode and then applying our method to epidemic data
to estimate transition rates.

References

Ronald Christensen, Wesley Johnson, Adam Branscum, and Timothy Hanson.
Bayesian Ideas and Data Analysis. Taylor and Francis Group, New York, 1st edition,
2011.

Paul Fearnhead and Dennis Prangle. Constructing summary statistics for approximate
bayesian computation. Journal of the Royal Statistical Society, 74(3):419–474, 2012.

Daniel Gillespie. Exact stochastic simulation of coupled chemical reactions. The Jour-
nal of Physical Chemisty, 81(25):2340–2361, 1977.

Paul Majoram, John Molitor, Vincent Plagnol, and Simon Tavare. Markov chain monte
carlo without likelihoods. Proceedings of the National Academy of Sciences of the
United States of America, 100, 2003.

R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2012. URL
http://www.R-project.org/. ISBN 3-900051-07-0.

Bernard Silverman. Density Estimation for Statistics and Data Analysis. Chapman
and Hall, London, 1st edition, 1986.

