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Abstract

Low-dimensional topology is an extremely rich field of study, with
many different and interesting aspects. The aim of this project was to
expand upon work previously done by I. R. Aitchison and J.H. Rubinstein
on 3-manifolds admitting a polyhedral metric of non-positive curvature.

The primary focus was on manifolds with cubings of non-positive cur-
vature, and in particular the open question of whether or not every 3-
manifold admitting such a cubing bounds a 4-manifold admitting such
a cubing. Investigation was done using combinatorial techniques, ideas
from cobordism theory and surgery theory, hyperbolic geometry and the
theory of Coxeter groups.

1 Introduction

The concept of inflicting a polyhedral metric of non-positive curvature on 3-
manifolds was first introduced by Rubinstein and Aitchison in [1]. Many inter-
esting examples were dealt with there and for a several years there was a burst
of activity on the topic, however there has been little recent work and many
questions remain open for exploration.

For this project, the guiding question was whether or not a cubed structure
on a 3-manifold would carry over to a 4-manifold for which it is the bound-
ary. Various techniques were drawn upon – cobordism theory was a natural
choice, as was the use of Coxeter groups. Canonical immersed hypersurfaces
were also studied as a potential constructive technique for cubed 4-manifolds,
and Andreev’s Theorem [5] was used to define structures admitting a natural
cubing.

2 Cubings of non-positive curvature

2.1 Definition and examples

2.1.1 Polyhedral metrics of non-positive curvature

We begin by defining the a polyhedral metric of non-positive curvature on a
surface, as per [1], as follows:
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Definition 2.1. A polyhedral metric of non-positive curvature on a close ori-
entable surface is a metric which is locally Euclidean except at a finite number
of points, where the dihedral angle is greater than 2π.

In [1], Aitchison and Rubinstein describe a polyhedral metric on the closed
orientable surface of genus 2 (denote this Σ2), which I will here make visually
clear. We can describe Σ2 as an octagon with sides identified by the word
aba−1b−1cdc−1d−1, as below in Figure 1.

Figure 1: Planar diagram of a genus 2 surface

We then bisect the octagon four times through the centre of each edge to
obtain eight quadrilaterals. Treat each of these quadrilaterals as a square as in
Figure 2: then the dihedral angle around the central vertex is 8× π

2 = 4π, and
the same for the outer vertex.

We can now apply the Gauss-Bonnet Theorem, i.e.

∫
Σ2

(Gaussian Curvature)dA =

∫
Σ2

δ(vertex)× (Local curvature at each vertex)dA

= 2× Local curvature at each vertex
= 2π × χ(Σ2)
= 2π(2− 2g)
= −4π

This gives curvature of −2π at each vertex, and thus our example is made
clear.

With this idea under our belt, we move on to the more general definition
from [1].
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Figure 2: Squaring on the genus 2 surface (with squares made explicit)

Definition 2.2. M has a polyhedral metric with non-positive curvature if every
closed embedded geodesic loop in lk(Q) has length at least 2π for every face Q,
assuming that the metric on lk(Q) is scaled to have curvature one at the locally
spherical points.

We won’t bother ourselves too much with the details of this definition, except
to mention that the construction we will describe is designed to satisfy it.

2.1.2 Cubings with non-positive curvature

A particularly nice combinatorial approach to building 3-manifolds with this
metric is described in [1].

Suppose that our 3-manifold M is constructed from a finite collection of
regular Euclidean cubes of the same size via identification of faces. Then if
the following two conditions hold, M has a polyhedral metric of non-positive
curvature:

1. Each edge must belong to at least four cubes.

2. At each vertex, certain local identifications of edges must not occur (i.e.
two edges of a single face must not be identified with each other in a
neighbourhood of the vertex). Details can be found in [1].

The simplest and most obvious example of a 3-manifold that satisfies these
conditions is the 3-torus obtained by identifying opposite faces of a single cube in
an orientation preserving manner. Verification of the conditions is a reasonably
simple exercise for this example.
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2.2 Some rather pleasant properties

2.2.1 Cartan-Hadamard Theorem

In Riemannian geometry, the Cartan-Hadamard Theorem is a result that gives
us some rather interesting facts about manifolds with non-positive sectional
curvature. The statement of the theorem presented below is from [2]; there one
can find a detailed discussion of the theorem and its proof (something we have
no space to discuss here).

Theorem 2.1. (Cartan-Hadamard Theorem). Let M be complete and KM ≤ 0
(the sectional curvature). Then for any p ∈ M , expp : Mp → M is a covering
map. Hence the universal covering space of M is diffeomorphic to Rn. Hence
the homotopy groups πi(M) vanish for i > 1.

This statement is adapted by [1] to give a nice, simple combinatorial version
of the Cartan-Hadamard Theorem:

Theorem 2.2. (Combinatorial Cartan-Hadamard). If an n-manifold Mn has
a polyhedral metric with non-positive curvature, then the universal cover of Mn

is diffeomorphic to Euclidean Rn.

Thus any 3-manifold we can construct with our cubing conditions has a
nice, known universal cover; moreover, any 3-manifold with cubing is irreducible
(every embedded (n− 1)-sphere bounds an embedded n-ball. [1]

2.2.2 Eilenberg-MacLane property

Another friendly property of our cubed 3-manifolds is that they are so called
Eilenberg-MacLane spaces. A space X is an Eilenberg-MacLane space of type
K(G,n) if the homotopy group πn(X) is isomorphic toG and all other homotopy
groups are trivial. Such spaces have important connections with other groups
associated with X, in particular the n-th singular cohomology group Hn(X;G).
More information can be found in Hatcher’s book on Algebraic Topology [3].

In particular, a 3-manifold admitting a non-positive cubing is of typeK(G, 1);
that is to say, the only (possibly) non-trivial homotopy group is the fundamental
group. This follows directly from the combinatorial Cartan-Hadamard theorem.

2.3 An interesting question

This brings us to the question at the heart of our present foray into the world
of 3-manifolds. It has been known since the fifties that every 3-manifold bounds
a 4-manifold. A proof and discussion of the orientable case can be found in
[8] (see [9] ch. 4 for information on Stiefel-Whitney numbers; the general case
follows since all Stiefel-Whitney numbers vanish for 3-manifolds). However,
there are still open questions regarding the properties any particular 4-manifold
may inherit from its bounding 3-manifold. We are guided, then, by the following
rather reasonable idea:
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Open Question. Does every 3-manifold with cubing of non-positive curvature
bound a 4-manifold with cubing of non-positive curvature?

For the rest of this report, investigating this question will be our primary
goal (in some form or other).

3 Canonical hypersurfaces

3.1 Initial idea

Given an n-manifold W with (hyper-)cubing, we can construct the canonical
hypersurface as follows: For each n-dimensional hypercube, build the (n − 1)-
dimensional hypersurfaces that each bisect this hypercube (there ought to be
n of these). Then, glue this surface together using the natural identifications
inherited from the cubing.

There is no guarantee that this hypersurface will be embedded (i.e. it may
have singularities). However, we can treat this hypersurface as the image of a
well-behaved manifold M under some immersion Φ : M →W .

In the case of a 3-manifold, we take each cube and bisect it three times
(parallel to each face). We then take the natural gluing inherited from the face
identifications of the cubing to obtain our canonical surface.

Note that there is no guarantee that the canonical surface will be either
connected or disconnected.

3.2 Separable cubings

We will discuss here a special class of cubings, which are well behaved.

Definition 3.1. A separated cubing on a 3-manifold is a cubing of non-positive
curvature which admits a 3-colouring on each cube that is preserved under face
and edge identification (see Figure 3).

By restricting to this class of cubings, it should be clear that the canonical
surface of the manifold admits the same 3-colouring (as in Figure 4). In fact, the
canonical surface for the manifold will be disconnected, and will consist of three
coloured components which are each separately embedded in the 3-manifold.

By examining how the surfaces intersect each other, and treating intersec-
tions as boundary components, we can construct extremely simple representa-
tive canonical surfaces.

3.2.1 Simple canonical surfaces

The upshot is as follows: Given a coloured surface Σ and curves of two different
colours, we want to construct surfaces that have the curves as boundaries, and
have non-intersecting arcs of intersection.

So, suppose we have our surface Σ and curves of two colours (say blue and
green) on that surface that intersect in a certain number of places. We want
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Figure 3: Cube with 3-colouring

Figure 4: Coloured canonical surfaces of a separated cube

to describe a way to construct a blue surface (Σ′) intersected by green arcs.
Once the is done, a green surface (Σ′′) with blue arcs will follow from the same
procedure.

First, for each blue loop on Σ, assign a boundary component on Σ′ (the
surface under construction).
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Intersections of green loops with the boundary components can take a few
forms. First, note that the loops of each boundary component can be dealt with
separately, thus reducing the complexity of the problem. See Figure 5 for an
illustration of this.

Figure 5: Separated intersected loops on Σ

So, by determining the local structure of Σ′ near one boundary component
at a time, we can fully determine a structure for Σ′.

Note that here we are going to consider the ’simplest’ possible structure for
our canonical surfaces – unless absolutely required (which we shall show does
not occur), we want our surfaces to be spheres with some number of boundary
components. It is also important to remember than the green and blue lines
never self intersect on Σ, thanks to the 3-colour condition.

Now, suppose a single green loop intersects a blue loop on Σ more than
twice. See Figure 6 for an illustration.

Figure 7 below demonstrates that the surface structure does not need to be
changed in this situation; the structure is the same as if two loops had separately
intersected the boundary loop on Σ.

It should also be fairly obvious that extra points of intersection (6, 8, . . . , 2n, . . .)
will not change this structure – the required construction is an simple extension
of Figure 7.

Finally we consider the situation where nested green loops intersect a blue
boundary on Σ (Figure 8).

We can construct arcs on the surface as follows in Figure 9. This makes
clear that no change need be made to the structure of Σ′ – it remains a sphere
with boundaries.

This exhausts all the possible types of intersections allowed given the 3-
colour constraint on our original 3-manifold. Thus, the simplest structure of Σ′

is just a sphere with boundaries.
Now, finally, for each surface Σ, Σ′ and Σ′′ we have two intersecting colours

to deal with. For instance, for Σ′ we have conditions determined by:

1. Blue/green intersections on Σ.
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Figure 6: Double intersected loop on Σ

Figure 7: Surface and arc construction from the double intersected loop on Σ

2. Blue/red intersections on Σ′′.

Let the sphere with n boundary components be denoted S2
n. Then if we have

• Σ′I = S2
n satisfying condition 1

• Σ′II = S2
m satisfying condition 2

it should be clear that

Σ′ = Σ′I#Σ′II = S2
n#S2

m
∼= S2

n+m
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Figure 8: Nested intersection of loops on Σ

Figure 9: Arc construction for the nested intersection

will simultaneously satisfy both conditions 1 and 2. A quick description of how
to see this is as follows:

1. Choose a section of Σ′I and a section of Σ′II not contained in the interior
of any loop or arc-boundary segment.

2. Connect sum via the boundaries of these two segments.

3. Note that if we had chosen our segments in a problematic location we
could easily have deformed our arcs around them to remove the issue.

Thus we have determined the simplest structure for our canonical surface!
Unfortunately, while this construction is somewhat interesting, it does not sug-
gest a clear way forward in terms of reconstructing our 3-manifold.
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3.3 An open question regarding canonical surfaces

So far all of the processes described have taken us from an n-manifold to an
(n − 1)-manifold. If we wish to determine whether or not cubed 3-manifolds
bound cubed 4-manifolds, we will need to reverse this procedure. This leads us
to the following open question.

Open Question. Given a 3-manifold M with cubing of non-positive curvature,
when can M be immersed as a canonical hypersurface for some 4-manifold with
cubing of non-positive curvature?

The key to answering this question may lie in the independently interesting
2-dimensional analogue.

Open Question. Given a surface with squaring of non-positive curvature, when
is it possible to immerse our squaring as a (possibly singular) canonical surface
inside of a cubed 3-manifold?

This is equivalent to the following question.

Open Question. Given a surface with squaring of non-positive curvature, when
can the squares be given (i) a label Ci, (ii) a label {A,B,C} and (iii) a ’path’
of edge identifications such that this assignment is consistent with a cubed 3-
manifold where the cubes are labelled Ci, the bisecting hyperplanes are labelled
{A,B,C}, and the ’path’ of edge identifications determines the gluing on the
faces.

One obvious example of a necessary condition is that the number of squares
in the squaring be a multiple of three.

4 Cobordism theory

4.1 Background

Cobordism theory was originally developed in 1954 by René Thom [4], an
achievement for which he would later win the Fields Medal. At the heart of
the theory is a rather elegant idea:

Definition 4.1. Two n-dimensional manifolds, M and N are called cobordant
if they can be embedded (call the embeddings i and j) in an (n+ 1)-dimensional
manifold W such that ∂W = i(M) t j(N).

Less formally, we say that two n-manifolds are cobordant if together they
disjointly form the boundary of an (n+ 1)-manifold.

As an extremely trivial example, consider two points on the real line {a}
and {b}. If we think of these as 0-manifolds, then the 1-manifold given by the
interval [a, b] is a cobordism between them.
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4.2 A surgical approach to our guiding question

Another way to approach our problem from the point of view of cobordism
theory through the technique of performing surgery on manifolds. When surgery
is performed on a manifold M to produce a manifold M ′, the trace of the surgery
gives a cobordism.

Roughly, this corresponds to attaching handles to the boundary of our man-
ifold, and crossing the result with the unit interval so that we ’start’ at one end
with M and ’finish’ at the other end with M ′. As an example, we can visualise
the trace defining a cobordism between one and two copies of S1 as a pair of
pants (see Figure 10).

Figure 10: Pair of pants as a cobordism between one and two copies of S1

This suggests a potential method that could be used to answer our question
in the general case, or otherwise construct specific examples: use surgery to
reduce (or construct) arbitrary 3-manifolds with cubing to (from) a finite set of
cubed 3-manifolds known to bound cubed 4-manifolds, in such a way that the
cobordisms preserve the non-positively cubed structure.

In order to prove the conjecture in this way, a number of steps would be
required:

1. Determine when surgery on a cubed 3-manifold M will result in a cubed
3-manifold N .
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2. Determine when the cobordism between M and N is a cubed 4-manifold
W .

3. Show that when two cubed 4-manifolds are glued along boundary compo-
nents, the result is a cubed 4-manifold.

4. Describe a method to reduce an arbitrary cubed 3-manifold to one of a
finite collection of cubed 3-manifolds (using the surgeries allowed given
the above conditions).

5. Prove that each of the cubed 3-manifolds in this finite set bounds a 4-
manifold with cubing of non-positive curvature.

Such a project would be extremely non-trivial; whether it is even possible
to do this is an interesting question. However if this is possible it would be an
extremely neat way to prove the conjecture.

5 Coxeter group constructions

5.1 Background

5.1.1 Coxeter groups

First, a definition:

Definition 5.1. A Coxeter group is an abstract group with presentation

〈r1, r2, . . . , rn|(rirj)mij = 1〉

where mii = 1 and mij ≥ 2 for i 6= j. If mij =∞, then there is no relation
of the form (rirj)

mij .

Coxeter groups can be thought of as a generalisation of reflection groups;
each generator ri of the group represents a reflection across some hyperplaneHi,
and each relation (rirj)

m corresponds to the hyperplanes Hi and Hj meeting
at an angle of π

m .
Thought of in this way, it is easy to see why each element satisfies the relation

r2
i = 1 (since reflecting twice brings us back to our original position). Similarly,

the relations (rirj)
m can be understood as saying that rirj is a rotation of 2π

m
around the intersection of our two hyperplanes.

5.1.2 Andreev’s Theorem

A theorem that ought to be mentioned here (its usefulness will become apparent
shortly) is Andreev’s theorem.

Andreev’s theorem is a complete classification of compact hyperbolic poly-
hedra having non-obtuse dihedral angles. I do not have anywhere near enough
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space to discuss the proof or details of the theorem here; an excellent refer-
ence for that is [5], in which the authors give background, state, and prove the
theorem (also correcting a mistake in the original proof).

For our purposes a statement of the proof, along with some basic properties
of non-obtuse hyperbolic polyhedra, will suffice:

Theorem 5.1. (Andreev’s Theorem). Let C be an abstract polyhedron with
more than four faces, and suppose that non-obtuse angles αi are given corre-
sponding to each edge ei of C. There is a compact hyperbolic polyhedron P
whose faces realize C with dihedral angle αi at each edge ei if and only if the
following five conditions all hold:

1. For each edge ei, αi > 0.

2. Whenever three distinct edges ei, ej, ek meet at a vertex, then αi + αj +
αk > π.

3. Whenever Γ is a prismatic 3-circuit intersecting edges ei, ej, ek, then
αi + αj + αk < π.

4. Whenever Γ is a prismatic 4-circuit intersecting edges ei, ej, ek, el, then
αi + αj + αk + αl < 2π.

5. Whenever there is a four sided face bounded by edges e1, e2, e3, e4, enu-
merated successively, with edges e12, e23, e34, e41 entering the four vertices
(edge eij connects the ends of ei and ej), then α1 +α3 +α12 +α23 +α34 +
α41 < 3π, and α2 + α4 + α12 + α23 + α34 + α41 < 3π.

Furthermore, this polyhedron is unique up to isometries of H3.

The following facts about such polyhedra will also be useful to keep in mind:

1. A vertex of a non-obtuse hyperbolic polyhedron P is the intersection of
exactly three faces.

2. For a cell complex C whose faces correspond to the faces of P , each edge
of C belongs to exactly two faces.

3. A non-empty intersection of two faces is either an edge or a vertex.

4. Each face contains not fewer than three edges.

Details on these properties can be found in [5].

5.2 Relationship with cubings

With these facts at hand, it should be clear that there is a ’natural’ way to divide
up non-obtuse hyperbolic polyhedra into cubes. Given that each vertex is the
endpoint of three distinct edges, we can treat this as one corner of a cube. The
other edges are then built from the midpoint of the given edges to the centre
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of the faces those edges belong to, then finally from the centre of the faces
to the centre of the polyhedron. The gluing conditions for our cubing should
follow directly from the conditions of Andreev’s Theorem. A (non-hyperbolic,
yet illustrative) example is given in Figure 11.

Figure 11: Constructing a cubing on a dodecahedron

Our hope is that, by using the constructive method described below, we can
build 4-manifolds which have Andreev’s polyhedra as faces, which may allow us
to construct a cubing on the 4-manifold.

5.3 Description of constructive method

We begin with a polytope P, whose cell faces are totally geodesic hypersurfaces
(i.e. any geodesic that is tangent to the hyperplane lies in the hyperplane)
in whichever geometry we are interested in (Rn, Hn, Sn – we will denote an
arbitrary geometry as Gn).

We want the angles between the faces of our polytope to be of the form π
n ,

for n ∈ Z with n ≥ 2. With such a condition, we can reflect P across its faces
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to obtain a tiling of our geometry. Two examples of a tiling for R2 are shown
below in Figures 12 and 13.

Figure 12: A tiling of the plane with equilateral triangles

Figure 13: A tiling of the plane with right angle triangles

It is immediate from this construction that the group of symmetries for our
tiling will be a Coxeter group, Γ, generated by our reflections, with relations
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given by the angles at which our hyperplanes meet (in the case of R2 the hy-
perplanes are straight lines).

We start by observing that Gn/Γ ∼= P; this quotient is not of much use to
us.

However, it should be obvious to see that Γ will have both finite order ele-
ments which fix points when acting on the space (i.e. reflections and rotations)
as well as infinite order elements that have no fixed points. We want to isolate
a finite index torsion free subgroup, Γ̂ ⊂ Γ. We can then quotient out by the
action of this subgroup to obtain a covering of a closed manifold.

The technique we will use to do this is as follows. First, we design a homo-
morphism φ : Γ → F where F is some finite group, with the condition that if
s ∈ Γ is torsion of order n, then φ(s) ∈ F is also torsion of order n (i.e. our
homomorphism preserves the order of torsion elements).

It should be clear to see that by design the subgroup K := kerφ ⊂ Γ consists
only of ‘translation’ elements (elements of infinite order).

We could take this as our subgroup, as it will evidently act freely on our
geometry. However, there is no guarantee that this will give us a ’nice’ manifold
– in particular, we want to force some 3-manifold to bound our 4-manifold.

So, let us again consider our tiling of Gn. Choose a face of our tiling polytope,
and let r denote the reflection across the hyperplane supported by that face.
Then we will define our subgroup of Γ as

Γ̂ := rKr ∩K

This is obviously another torsion free subgroup. Thus, we can construct

W = Gn/Γ̂

Then it should be clear that r : W → W fixes some hypersurface M ⊂ W .
By splitting W along M (see Figure 14) we can thus construct a 4-manifold
with polytopal structure that is bounded by our 3-manifold M .

One thing we do need to pay attention to is the connectedness of M . Ideally,
we want M to be connected – otherwise we can wind up with a situation where
our final 4-manifold has multiple boundary components. See Figure 15 for a
visualisation.

5.4 Example: Building a torus from a triangular tiling of
the plane

Let us take the tiling given in Figure 12 as an example. It should be clear that
the Coxeter group for this tiling is given by

Γ = 〈r1, r2, r3 | r2
1 = r2

2 = r2
3 = (r1r2)3 = (r2r3)3 = (r1r3)3 = 1〉

We will construct a homomorphism from Γ to the symmetric group of order
three, with presentation
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Figure 14: Wn+1 split along Mn

Figure 15: Wn+1 split along a disconnected Mn

S3 = 〈x, y |x2 = y3 = xyxy = 1〉

Note that we can translate this into cycle notation using (for instance) x↔
(1 2) and y ↔ (1 2 3).

We define a homomorphism φ : Γ→ S3 by

r1 7−→ x
r2 7−→ yx
r3 7−→ y2x

It is easy enough to see from this that φ(r1), φ(r2) and φ(r3) are all of order
two (note that y2x = xy), and that φ(r1r2), φ(r2r3) and φ(r1r3) are all of order
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three. Thus, our homomorphism preserves the order of the torsion elements in
our ’generating’ triangle.

We use a geometric argument to show that the order of every torsion ele-
ment in Γ is preserved by φ. Some background is assumed here regarding the
classification of rigid motions in the Euclidean plane; all details can be found in
chapter 5 of Artin [6].

First, note that any torsion element in Γ must have a fixed point in our tiling,
and is thus either a reflection or a rotation. But any reflection or rotation of our
tiling will be conjugate to a reflection or rotation in our ’generating’ triangle
via a translation or glide reflection. That is to say that for some reflection R
(rotation O) and infinite order element T (T ′) we have that

R = TriT
−1 (O = T ′rirjT

′−1)

Since conjugation is an order preserving operation, it immediately follows
that all of the torsion elements in Γ have their order preserved by φ. Thus, the
kernel of φ is a subgroup containing only infinite order elements, which will act
freely on our tiling of the plane.

We set Γ̂ := kerφ. Then the quotient space R2/Γ̂ consists of the cosets

Γ̂ yΓ̂ y2Γ̂

xΓ̂ yxΓ̂ y2xΓ̂

which we can visualize by choosing representative triangles in our tiling (and
ignoring triangles that are identified under infinite order actions). Obviously we
need six triangles – we can choose them as per Figure 16, with side identifications
obvious from the translates of the given triangles.

Thus, whichever 2-manifold corresponds to the word abca−1b−1c−1 is home-
omorphic to R2/Γ̂. The following sequence of algebraic manipulations corre-
sponds to repeated cutting and rejoining of the hexagon:

abca−1b−1c−1 = abd ∪ d−1ca−1b−1c−1

= dab ∪ b−1c−1d−1ca−1

= dabb−1c−1d−1ca−1

= ac−1d−1ca−1d
= ac−1d−1e−1 ∪ eca−1d
= c−1d−1e−1a ∪ a−1dec
= c−1d−1e−1aa−1dec
= decc−1d−1e−1

= ded−1e−1

This word represents the planar model for the torus. Thus, we conclude that

R2/ Γ̂ ∼= T 2.
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Figure 16: A graphical representation of R2/Γ̂

5.5 Davis Hyperbolic 4-manifold

In the paper A Hyperbolic 4-Manifold [7], Michael Davis constructs a more com-
plicated manifold using Coxeter groups (see Figure 17 for the specific groups),
in a way that would be highly useful to examine when it comes to the construc-
tion of cubed 4-manifolds from cubed 3-manifolds. I will attempt to give an
overview here.

Davis uses the groups Gn to construct polytopes Xn (with symmetries deter-
mined by the Coxeter groups) that tesselate various geometries: Xi for 1 ≤ i ≤ 3
tesselate the corresponding Si, and X4 tesselates H4.

Davis then defines a torsion free subgroup of G4 as follows: For each face D ∈
D(X4), where D(X4) is the set of 3-dimensional faces of X4, a transformation
tD is constructed using the reflective symmetries of X4. Specifically, tD = rDsD,
where rD is the reflection of H4 across the hyperplane supported by D, and sD
is the reflection of H4 across the hyperplane through the centre of X4 which is
orthogonal to the geodesic ray from the centre of X4 to the centre of D.

It isn’t too hard to see that tD can be thought of as a transformation; more
importantly, however, is that it is of non-finite order. Davis thus defines a
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Figure 17: The Coxeter groups used in the Davis construction [7]

subgroup K ⊂ G4 generated by the family (tD)D∈D(X4). This is a finite index
subgroup with acts freely on H4, thus the space M4 = H4/K is a hyperbolic
4-manifold.

More details about this particular manifold can be found in [7]; particular
note should be taken of the geometric description of M4. It can be shown that
X4 is a fundamental domain for K, and consequently that M4 is obtained by
identifying D with −D via sD for each D ∈ D(X4). This gluing suggests that
a cubing of non-positive curvature could be inflicted upon M4, as well as upon
its face structure.

5.6 Two final questions

All this leaves us with two final questions to consider (the answers for which
sadly fall outside the time allotted to this particular project). The first question
draws on Andreev’s Theorem, and its relationship to non-positive cubings.

Open Question. If we take a non-obtuse polyhedron (as given by Andreev’s
Theorem), when will it occur as the face of some 4-dimensional polytope?

Answering this question would give us a potential ’in’ to studying which
cubed 3-manifolds bound cubed 4-manifolds.

The second question is suggested by the Davis construction. Remember
that inside a reflection group for H4 Davis identifies a group that is almost
the reflection group of a regular dodecahedron. We are interested in a kind of
converse to that procedure.

Open Question. Suppose Γ is the reflection group for some polyhedron. When
can we find or construct a symmetry group Λ for some 4-dimensional polytope
such that Γ is a subgroup of Λ?
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Answering this question would obviously provide a great deal of information
that (in conjunction with the aforementioned construction) could allow us to
answer the more general question posed back at the start.
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