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Introduction

Stochastic epidemic modelling has seen increasing attention from mathematicians in
recent years, particularly in developing models that depart from the traditional as-
sumption of a homogeneously mixed population of a single type of individual. This
is in recognition of the fact that the homogenous model is unrealistic for all but the
smallest of populations and that in almost all cases, individuals will respond to and
spread an infection di↵erently depending on their defining features (i.e., age, race,
sociability et cetera). The reality of the complexity and size of modern population net-
works poses a unique challenge to public health professionals looking to find methods
of distributing an often limited vaccine resource in a way that will minimise the final
e↵ects of an epidemic.

In this paper, I will use a population model developed by Ball & Sirl (2012) to
attempt to find an optimal method of vaccination that reduces the final mortality of
an epidemic. The model incorporates the heterogenous nature of a real world popu-
lation network in three ways; the model incorporates several types of individuals on
a random graph with household structure. A random graph structure ensures that
each individual is only in contact with several others in the larger population, depart-
ing from the homogenous model which would be represented using a complete graph.
Family structure in the graph is defined as the presence of complete subgraphs of a
few members from the overall population, to model contact between individuals who
have frequent contact with one another.



Individuals will be delineated into two classes based on their infectivity and the
severity of the response to a possible infection. Class 2 will possess a comparatively
low rate of infectiousness and a low rate of mortality, while Class 1 will have a high
rate of mortality and a high rate of infectiousness. I will evaluate and compare three
vaccination strategies:

1. Uniform random vaccine allocation across the entire population network, irre-
spective of class.

2. Vaccinate Class 1 uniformly at random and then, if there is su�cient vaccine to
vaccinate all of class 1, also vaccinate Class 2 uniformly at random until vaccine
supply is exhausted.

3. The opposite of 2.

Before evaluating these vaccine strategies a method of calculating the expected
final size of the epidemic must be found. Subsequently, the rest of the paper will be
organised as follows. In Section 1, I will describe the model and the conditions under
which it will be analysed. In Section 2, I will evaluate the multitype analogue of the
branching process approximation developed by Ball et. al (2009) that was used by Ball
& Sirl (2012) to find the expected final size of a major outbreak. Finally in section 3,
the results of a simulation of the vaccine methods will be evaluated and compared.



1 The Model.

There are two types of individuals in this population and m⌘ households of category
⌘, where ⌘ denotes a houeshold with nj individuals of type-j (for all j 2 {1, 2}). Let
↵ denote the set of all household categories, so

↵ = {⌘ = (n1, n2) 2 Z2
+ : |⌘| � 1},

where |⌘| = n1+n2. Denote by Nj =
P

⌘2↵ njm⌘ the total number of type-j individuals
and assume Nj < 1 for all j, so it follows that m⌘ > 0 for only finitely many ⌘. Let
⇢⌘ denote the asymptotic proportion of households of type-⌘, given by the distribution
⇢ = (⇢⌘, ⌘ 2 ↵). Using ⇢, we find that vi, the proportion of individuals of type-i in
the population, is given by

P
⌘2↵ ni⇢⌘/

P
⌘02↵ |⌘0|⇢⌘0 We consider each family as a con-

nected subgraph with |⌘| members and each individual in the population is a member
of one family.

The global structure of the population model is given by a random graph where
each individual has a degree distribution dependent on what class they are from. For
each individual, we need to specify not just the total number of neighbours, but the
total number of neighbours of each class. Let � = (d1, d2) denote an individuals degree
distribution, where di denotes the total number of neighbours from category-i. It’s
important to note that an individual’s degree distribution gives the total number of
adjacent individuals in the global population, not including those from its own house-
hold. We can consider each � as the independent realisation of the random variable
�j = (D1

j , D
2
j ), j 2 {1, 2} with P(�(j) = �) = pj� for all � 2 Z2

+. We assume that

the mean number of neighbours of category-j for a type-i individual, µ(j)
i ,is finite, i.e

µ
(i)
j = E[Di

j] < 1 for all i, j 2 {1, 2}.

We can construct a realisation of the network of global contacts using a multitype
version of the ‘configuration model’ (described in Durrett, (2006, Chapter 3)) as fol-
lows. Firstly, assign to each type-i individual a number of ‘type i ! j half-edges’
according to independent realisations of the random variable �i, i 2 {1, 2}. Firstly,
we pair the ‘type i ! i half-edges’ together uniformly at random, with each pair of
‘type i ! i half-edges’ forming an edge in the random graph describing the possible
global contacts of type-i for a type-i individual. Then, for each pair i, j with (i 6= j)
and i < j, we take an i ! j half-edge and pair it with a j ! i half-edge chosen uni-
formly at random and repeat this process until one type of half edge is exhausted. To
ensure that there are similiar numbers of type i ! j and j ! i half-edges, we enforce



the relation v1µ
(1)
2 = v2µ

(2)
1 , where vi and µ

(j)
i denote the proportion of type-i individ-

uals and the mean number of contacts of category-j for a type-i individual respectively.

There are a few imperfections in the random graph of global contacts that could
arise using this construction. Namely, the issue of self-loops and parallel edges needs
to be addressed. A self-loop would arise whenever two half-edges from the same in-
dividual connected, similiarly a parallel edge would occur when q half-edges from one
individual connected to q half-edges of one other neighbour (where q > 1). If not
properly controlled, self-loops and parallel edges may cause serious problems with the
final analysis so it’s important for the model to satisfy the conditions under which
the probability of any randomly selected half-edge being involved in an imperfection
converges in probability to 0 as m ! 1. For this to occur the number of self loops and
parallel edges would be required to not depend in any way on m as m ! 1. Ball &
Sirl (2012) show that, provided the degree distributions for each category of individual
have finite second moments, the probability of a half-edge being involved in a self-loop
or parallel edge converges to zero as m ! 1.

Initially, all individuals would be susceptible except one infective. When an infective
individual of type-i makes infectious contact with a susceptible individual that person
will become infected at a rate dependent on both their category and whether they are
within the household of the infected individual (a local contact) or from the greater
global community (a global contact). A type-i infective makes infectious contact with

any local type-j individual at the points of a Poisson process with rate �(L)
ij , similiarly

with a type-j global contact this type-i infectious individual makes infectious contact at
the points of a Poisson process with rate �

(G)
ij . For convenience, we define the contact

rate matrices as ⇤(L) = (�(L)
ij , i, j 2 {1, 2}) and ⇤(G) = (�(G)

ij , i, j 2 {1, 2}). Both

�
(L)
ij and �

(G)
ij are per-pair infectious contact rates, so an infectious type-i individual

from a family of category ⌘ and global degree distribution � would make infectious
contacts at the overall rate

P
nj2⌘ nj�

(L)
ij +

P
dj2� dj�

(G)
ij . When an infective individual

makes infectious contact with a susceptible individual of type-j, this newly infected
individual will remain infectious for a period of time I determined by an exponential
distribution with parameter �, which is the same for all individuals. Upon leaving
the infectious stage an infected type-i individual will either die with probability pi or
recover and become immune with probability qi (qi = 1� pi). So the total proportion
of the population that dies is given by z = p1z

(1)v1 + p2z
(2)v2, where z(i) is the total

proportion of type-i individuals who ultimately are infected. It’s easy to see that the
best vaccine method will be the one that first reduces the element of z which is initially



the largest. All Poisson processes and infectious periods are assumed to be mutually
independent of each other and the population structure. The fact that the infectious
periods and rates of infection follow mutually independent exponential and Poisson
processes means that the epidemic could be represented as a continuous-time Markov
chain.

1.1 An Example.

Ball & Sirl (2012) use parameters similiar to the following example for their simula-
tion. We denote class 1 as children and class 2 as adults with the household category
distribution (⇢⌘) given in the table below (Table 1).

#adults
#children

0 1 2 3
0 - 0.00 0.00 0.00
1 0.205 0.04 0.04 0.02
2 0.195 0.15 0.25 0.10

This family distribution results in the proportions of individuals who are children (v1)
being 3

5 and adults (v2) being
2
5 . We take �1 =(15,4) and �2 =(6,10), so as an exam-

ple this would mean that the average child would be in global contact with 15 other
children and 4 adults. The infectious periods for each individual are independent, ex-
ponentially distributed random variables with mean parameter � =10. We define the
infectious contact rate matrices as

⇤L =

0

@
4
3

2
3

1
3

2
15

1

A and ⇤G =

0

@
2
15

1
15

1
15

1
30

1

A .

So for example, the rate of infectious contact of a type-1 individual with a type-2
indivudal is given by an independent Poisson distribution with parameters 2

3 if they
are local contacts and 1

15 if it is a type-2 global neighbour. We let the probabilities of
dying if infected be p1 = 0.50 for children and p2 = 0.20 for adults. Figure 1 overleaf
is a plot of the progression of an epidemic over a population of 500 families with the
parameters just described.



Figure 1: Progression of the Example Epidemic.

The peak of the epidemic occurs around 3.5 time intervals from the start of the
epidemic, with just over 20% of the population is infected. After this, the number
of new infections tapers o↵, before finally dying out around 12 time intervals from
the start of the epidemic, with approximately 30% of the population dead and about
35% of the total population having become infected but surviving their infection and
recovering.



2 Expected Relative Final Size of a Major
Outbreak.

We now turn to calculating the expected proportion of individuals of a certain type
that are ultimately infected by the epidemic (z(i)). z(i) is equivalent to the probability
that a randomly chosen type-i individual that is initially in an uninfected household is
ultimately infected by a major outbreak. Ball & Sirl (2012) determine this probability
by considering the size of the susceptibility set of a randomly chosen type-i individual.

2.1 Susceptibility Sets.

An individual’s susceptibility set is a random set of individuals, dependent on the indi-
vidual’s infectious period and relevant independent Poisson processes associated with
their infectivity, who would ultimately become infected were this individual of interest
to become infected during an outbreak. More concretely, we construct a directed graph
based on this set, in which a directed arc from i to j would be present when, if i were
to become infected, it would make infectious contact with j. We can approximate
the size of the susceptibility set of an individual by considering the total progeny of
an appropriate approximating multitype branching process, denoted X. We can con-
struct this branching process in terms of the households to which the individuals who
comprise a random type-i individual’s susceptibility set belong. The zeroth generation
of X would comprise the household to which our individual of interest belongs and
the first generation would be the households that contain an individual who makes
global infectious contact with the individual’s local susceptibility set (i.e, its house-
hold). Generalising, the (n + 1)th generation would be the infected households that
contain an individual who makes global infectious contact with a primary individual
in a household from the nth generation. Individuals who join the susceptibility set
by making global infectious contact with a member of the existing susceptibility set
are known as ‘primary’ contacts and those who join the set through within-household
infectious contact are denoted as ‘secondary’ contacts. X is a ‘backward process’, as
the infection spreads ‘down’ the generations (i.e, from n to n� 1) before reaching the
household of the individual of interest in the zeroth generation.

The full details of how the size of an individual’s susceptibility set and the proba-
bility of its infection are very involved and what follows is a comparatively brief outline
of the complete details. For the interested reader, the full argument in the case where
all the individuals are from the same class can be found in section 6 of Ball et al.



(2009). Let E(m⌘) denote the approximating branching process of an epidemic on a

population network with m⌘ type-⌘ households (for all ⌘ 2 ↵) and let Z
(m⌘)
t repre-

sent the number of infectious type-⌘ households in generation t of E(m⌘). Let <(m⌘)
i⇤

denote the susceptibility set of a randomly selected type-i individual, denoted i⇤, as
described above. Now, we can consider the probability of i⇤ ultimately becoming in-
fected when it is susceptible at generation t by stopping the construction of E(m⌘) at

generation t. This would leave Zm
t =

P
⌘2↵ Z

(m⌘)
t infectious half-edges unconnected

(in this case, a complete edge in the construction of E(m⌘) would consist of an infec-
tious half edge from a household of generation n to a connecting to the half-edge of
an individual in another uninfected household (generation n + 1)). Returning to the

construction of <(m⌘)
i⇤ , if at any point a half-edge from the growing susceptibility set

of i⇤ is paired up with one of the Zm
t infectious half-edges then i⇤ is ultimately infected.

Let R(m⌘) = ((R(m⌘)
k ), k = 0, 1, ...) describe the number of households in each gener-

ation of <(m⌘)
i⇤ and let X(m⌘)

i⇤ be a branching process associated with this susceptibility

set that shares the same properties as X. Let X(m⌘) = ((X(m⌘)
k ), k = 0, 1, ...) denote

the number of o↵spring in each generation of X(m⌘)
i⇤ . Let R̂(m⌘) denote the total num-

ber of households in R(m⌘), further let X̂(m⌘) denote the total o↵spring of X(m⌘)
i⇤ . By

definition, R̂(m⌘) and X̂(m⌘) have the same limiting distribution as m ! 1. Now, if
for any k 2 N, R̂(m⌘) < k then the probability that <(m⌘)

i⇤ intersects with Zm
t in a

major outbreak goes to 0 as m ! 1 for all t (since a major outbreak has at least
log(m) infectious households (see Corollary 6.1 of Ball et al. (2009)). So as m ! 1,
the limiting probability that i⇤ is ultimately infected by a major outbreak is at most
P(X̂(m⌘) = 1), the probability that the approximating branching process avoids ex-

tinction. In other words, since by definition Z
(m)
t increases without bound as m ! 1,

R̂m⌘ must not be bounded above (i.e, lim
m!1

P(X̂(m⌘) < k; k 2 N) = 0).



2.2 The Branching Process.

To determine whether in the long term the branching process X goes extinct, we need
to evaluate its o↵spring distribution. The o↵spring distribution needs to take into
account the complexity of the population - both the family structure and the fact that
there are multiple types of individuals. An individual who is part of a family in gener-
ation n of the branching process would have an o↵spring distribution that depends on
its own category, the category of the individual who it makes global infectious contact
with, the composition of that individuals local susceptibility set and the number of each
type of individual that each member of that local susceptibility set is globally in infec-
tious contact with. Ball & Sirl (2012) show that the random variable that describes
this complexity can be denoted ii0B̃ = (ii0Bjj0 , j, j 2 {1, 2}), where i is the category of
the individual of interest in a household of generation n. ii0Bjj0 is the number of type-j0

individuals that make global infectious contact with an individual of type-j who is a
member of the household of the type-i0 individual who themselves have made global
infectious contact with the individual of interest who is of type-i. Figure 2 overleaf
gives a diagram of ii0B̃jj0 . For the first generation, the random variable describing the
o↵spring distribution is denoted iB̃ = (iBjj0 , j, j

0 2 1, 2), where iBjj0 is the number of
type-j0 individuals who make global contact with a type-j individual who is in the local
susceptibility set of the initial type-i infective. It is assumed that, as m ! 1, during
the early growth of the susceptibility set, the type-j0 individuals who are joining the set
are in households that are previously unassociated with the susceptibility set almost
surely. This ensures the branching property of the susceptibility set, which is essential
if we are to approximate its growth using the backward process described in section 2.1.

(a) Initial Generation (iBjj0). (b) Subsequent Generations (ii0Bjj0).

Figure 2: Diagrams of iBjj0 and ii0Bjj0.



Now that the random variables that describe the o↵spring distributions for the
branching process have been detailled, we need to determine the probability that these
variables equal 0 as m ! 1 (i.e, the probability of the branching process ultimately
going extinct). For any single-type, homogenous population where Zn is the size of
generation n, the probability of the ultimate extinction of the branching process as
n ! 1 can be found by finding ✏, the smallest non-negative root of the processes
probability generating function (PGF) G(s), (i.e, ✏ is the smallest s 2 [0, 1] for which
G(s) = s). For full details and a proof of this theorem, see Theorem 5.4.5 of Grimmett
& Stirzaker (2001). Ball & Sirl (2012) use a multitype analogue of this theorem on the
PGFs of ii0B̃ and iB, which are denoted

H̃ii0(s) = f
ii0 B̃

(s) =
X

x2R

P(ii0B̃ = x)sx = E[sii0 B̃],

and
Hi(s) = f

iB̃
(s) =

X

x2R

P(iB̃ = x)sx = E[siB̃],

where R 2 Z4
+, s 2 [0, 1]4, (i, i0) 2 {1, 2}2 and i 2 {1, 2}. The full derivation of

these PGFs can be found in section 3.2 of Ball & Sirl (2012). If we write H̃(s) =
(H̃ii0(s), i, i0 = 1, 2), the asymptotic probability that a type-i individual not in the ini-
tially infected household is ultimately infected in the epidemic given by z(i) = 1�Hi(h),
where h is the smallest solution of H̃(s) = s (s 2 [0, 1]4). So, the total probability
of any randomly chosen individual not in the initial infected household becoming ulti-
mately infected is given by z =

P
j2{1,2} vjz

(j). As was mentioned at the beginning of

section 2, z(j) is also the total proportion of type-j individuals ultimately infected in
the epidemic, so z is the total proportion of the population infected.



3 Testing the Vaccination Strategies.

We now turn to comparing the e↵ects of the vaccine strategies detailed in the intro-
duction on the overall mortality of an epidemic. Before doing so, it’s essential that the
e↵ect of the vaccine be explained. In this paper, we are examing only a nonrandom
vaccine, meaning vaccinated individuals of the same type all have the same response to
the vaccine. We say that for each i 2 {1, 2}, a vaccinated type-i individual has relative
susceptibility ai 2 [0, 1] (compared to a non-vaccinated type-i individual) and, if it
were to become infected, a relative infectivity bi 2 [0, 1]. So, the rate of each Poisson
process associated with a particular type-i individual becoming infected is multplied
by ai, which can be interpreted as the vaccinee ‘repelling’ each incoming infectious
contact with probability 1�ai. Similiarly, if the vaccinated type-i individual were to
become infected, the rates at which it makes infectious contact would be all multuplied
by bi. For our purposes in this paper, we will take ai = 0 for all i 2 {1, 2}. So the
vaccine immunises individuals perfectly across all categories. We can set bi to any
value, as a vaccinated individual can never become infected and so cannot be part of
the spread of the epidemic. For the sake of continuity, the parameters for the example
epidemic in section 1.1 will be used here.

The vaccination strategies are simulated as follows. We begin with a population of
susceptibles with 0% vaccinated and simulate the epidemic, we then increase the num-
ber of vaccinees one percentage point at a time by removing them from the population
of susceptibles before the epidemic begins in a fashion that depends on the vaccination
strategy being simulated. When the epidemic has run its course, we find the total
proportion of the population that has died for this run of the simulation. Figure 3
overleaf was obtained in this manner, by running the simulation over a population of
300 families (approximately 900 individuals) where each percentage point was simu-
lated 50 times for each of the three vaccine strategies. The lines tracking the end result
for each strategy are found by calculating the mean of the nonzero results over the 50
simulations for each percentage point. In total, this required 15,150 simulations, which
took approximately 20 hours on a desktop computer.



Figure 3: The Vaccination Strategies.

There is a fair amount of variability in the lines for each of the vaccination strate-
gies. This could be remedied by running more simulations over a larger population;
Ball & Sirl (2012) simulate the epidemic on a population of 500 families, with 1,000
simulations for each percentage point of each of the vaccination strategies and obtain
a much smoother plot (see Figure 2, section 5 of Ball & Sirl (2012)). However Figure 3
does share a similiar shape to Ball & Sirl’s result and the points at which the propor-
tion of people vaccinated prevent the epidemic taking o↵ for each vaccination strategy
are almost the same.



Immediately it is apparent that vaccinating the children first is the better strategy
in this situation. The ‘adults first’ strategy requires almost 80% more vaccine to
achieve a similiar result, with 68% vaccination required, compared to the ‘children
first’ strategy, with approximately 37% coverage required. It’s worth remembering
also that children make up 40% of the population, this indicates that children are the
ones primarily responsible for the spread of the infection and that with the children
almost entirely vaccinated the epidemic will not spread amongst a population almost
totally made up of adults. However the ‘adults first’ strategy indicates that one needs
to vaccinate all the adults first, and then about one fifth of the children before the
epidemic cannot spread on the remaining susceptibles, which means that we cannot
dismiss adults as not playing an important role in the spread of the epidemic.

4 Conclusion & Acknowledgements.

There is a multitude of possible extensions that could be applied to this model and
the vaccination strategies. For example, a quite e↵ective vaccination strategy involves
identifying an infective and e↵ectively ‘quarantining’ them by vaccinating their local
and global contacts. There is also the di�culty of the theory of the population model
and epidemic meeting real world observations - most of the time the parameters of an
epidemic are unknown and must be estimated after the fact, for example the infectious
period distribution of di↵erent types of individuals or the rates of the spread of the
infection amongst di↵erent classes.
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