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1 Introduction

This project investigates the application of the optimisation technique approximate dy-
namic programming to the elevator dispatching problem, which asks for a policy that
schedules a group of elevators in a building to serve passenger requests. The complex-
ity of the problem increases drastically when the number of floors is of the magnitude
of a skyscraper and a considerable amount of passengers are being transported. Al-
though this problem is commonly formulated using stochastic dynamic programming,
researchers have approached it via evolutionary optimisation techniques, such as ge-
netic algorithm [1, 3, 4]. In this project, I have attempted to solve the problem using
approximate dynamic programming [2] that adopts the stochastic dynamic program-
ming formulation.

A solution to the elevator dispatching problem is comprised of the action of each
elevator at every decision point, which we call time step, given the state of the system.
A set of fixed operational rules are typically used in the conventional elevator systems,
whilst more dynamic strategy may be deployed in modern systems due to the advent of
the computer. I have attempted this approach by programming a solver that produces
schedules for the elevators.

The rest of the paper consists of the formulation of the problem, the method of ap-
proximate dynamic programming, and the result from experiments.



2 Formulation

A standard dynamic programming formulation comprises (1) parameters that define a
specific instance of the problem, (2) system states that describe the system at a given
time step, (3) decisions that need to be made at each state, and (4) objective that is
the goal of the optimisation.

For the elevator dispatching problem discussed in this project, each part is formulated
as following.

(1) Parameters

N floors (N ≤ 200)

M elevators (M ≤ 8)

Elevator capacity: P passengers (P = 20)

T time steps

The constant T determines the temporal horizon to be considered in the solution.

(2) State
St = (Rta, Dtb)

where

t = 0, 1, . . . , T

a = (next floor, arrival time, carrying k passengers to floor j)

b = (i, j) request from floor i to floor j

Rta = number of elevators with attribute a at time t

Dtb = number of passengers with attribute b at time t

The use of the number of elevators/passengers with certain attributes provides an easy
transition function between states.



(3) Decision
xt = (xtad)

where

t = 0, 1, . . . , T

a = attribute for elevator

d = (i, j) action to serve a request from floor i to floor j

(4) Objective
Vt(St) = min

xt

(C(St, xt) + γE{Vt+1(St+1))|St})

where

C(St, xt) is the cost function of time taking xt in St

St+1 = S(St, xt,Wt+1)

E{Vt+1(St+1)|St} is the expectation taking xt in St

γ is a discount factor (0 < γ < 1)

The transition function S(·) takes the state and the decision at time t, as well as the
new requests Wt+1 arriving at t+ 1, and returns the next state St+1.

The discount factor γ is introduced to compensate for the inaccuracy of our prediction
in the future states.



3 Method

In dynamic programming, we would solve

Vt(St) = min
xt

(C(St, xt) + γE{Vt+1(St+1))|St})

recursively, where the expectation of the value in the future states is evaluated as

E{Vt+1(St+1))|St} =
∑
Wt+1

P(St+1|St, xt)Vt+1(St+1)

which uses a transition matrix P that consists of the probabilities of a transition be-
tween any two states.

For instance, to solve V0(S0) = minx0(C(S0, x0) + γ
∑

W1
P(S1|S0, x0)V1(S1)), we have

to not only consider all possible decisions x0 and new requests W1, but also have the
values of V1 for all possible states S1. This requires the values of Vt+1 are obtained
before evaluating Vt, and therefore we would program by starting at VT and proceeding
backwards to V0.

With the prevalent computing power, a problem instance of small size, such as 10 floors,
can be solved in a negligible amount of time. For large problems, such as 100 floors,
this standard approach becomes insufficient due to the huge space of new requests,
states, and decisions.

Approximate dynamic programming is an iterative method that tackles this compu-
tational problem by reducing the space we examine, and improving the solution over
iterations. Instead of considering multiple new requests per time step, we generate a
sample of future requests Wt for t = 0, 1, . . . , T − 1 at the beginning of each itera-
tion. Similarly, we choose a small set of decisions to consider, which can be generated
randomly or according to certain policies. Consequently, the number of states to visit
is significantly reduced due to the decrease of new requests and decisions to examine.
Listing 1 shows the structure of the algorithm.



Listing 1: Algorithm

V
n

= estimation in iteration n

X n = set of decisions in iteration n

Step 0 Initialise

Step 0a Initialise V
0
, e.g. V

0
= inf

Step 0b Choose an initial state S1

Step 0c Set iteration counter n = 1
Step 1 Generate a sample path W n

Step 2a Solve

v̂n = min
x∈X n

(C(Sn, x) + γP(s′|Sn, x)V
n−1

(s′))

Step 2b Update value function estimation

V
n
(S) =

{
v̂n, S = Sn

V
n−1

, otherwise.

Step 2c Update state Sn = S(Sn, xn,W n) where xn is the solution to v̂n

Step 2d Go to step 2a
Step 3 Update n = n+ 1. Go to step 1 if n < MAX ITER

4 Experimental Result

Effectiveness and efficiency are the two common factors that characterise an optimi-
sation algorithm, that is, how good the solution is and how fast a program solves the
problem.

I wrote two computer programs: one uses dynamic programming that always returns
the optimal solution as it explores all possible states; the other uses approximate
dynamic programming, of which the result is compared with the optimal solution.

The traffic data was randomly generated by a Poisson process, which comprises the
scenarios of up peak, down peak, and lunch.

To test effectiveness, I experimented with a problem instance of 10 floors, 4 elevators,
300 time steps. The instance was solved to optimality by the first program, and then
solved using various iterations by the second program. The plot below shows the



approximate dynamic programming solver converges after about 80 iterations, up to
91% optimality for up/down peak traffic, and 85% for lunch.

To test efficiency, the approximate dynamic programming solver was run against prob-
lem instances of 4 elevators and 300 time steps with the number of floors up to 200.
All instances are solved under 1 minute on my laptop with moderate computing power.
This can be interpreted as, if we take 1 time step as 1 second in real time, then we are
able to spend less than 1 minute planning a schedule for the next 5 minutes.



5 Conclusion

The elevator dispatching problem can be formulated using stochastic dynamic pro-
gramming. The time to solve the problem, required by the standard approach, grows
exponentially due to the huge space of uncertainties, states, and decisions. To tackle
this computational difficulty, approximate dynamic programming considers a small
subset of the problem space, and improves its solution iteratively. The effectiveness
and efficiency of this technique are justified by experimental results, which meets the
expectation in a real-world situation.

I would like to thank AMSI for providing me this scholarship and my supervisor Dr
Michael Bulmer for his patience and invaluable advice on the project. The Big Day In
event was the highlight of the Vacation Research Scholarship for me, where I was in-
troduced to various topics in different mathematical areas, and had good conversations
with the students from other universities.



References
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