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1 Introduction

Many biological processes can be accurately modelled as systems of ordinary differential
equations (ODEs). The free parameters which comprise such models are, however,
rarely accessible for direct measurement, and must be inferred by fitting the model
to a set of experimental data. In this report, we consider a Bayesian approach to
the problem of parameter estimation in nonlinear ODE models. To illustrate our
approach, we perform parameter estimation using a synthetic dataset derived from the
FitzHugh-Nagumo (FHN) model [2,7]. The FHN model originated as a simplification
to the Hodgkin-Huxley model [6], which describes the voltage potential across the cell
membrane of the axon of giant squid neurons. In the FHN model, the voltage V across
an axon membrane depends on a recovery variable R:

dV

dt
= γ

(
V − V 3

3
+R

)
,

dR

dt
= −1

γ
(V − α + βR) (1)

where α, β, γ ∈ R+ are the free model parameters. The choice of the FHN equations
was motivated by the highly nonlinear dynamics which they exhibit, as shown in
Figure 1. Indeed, many of the difficulties associated with parameter estimation in
biological models is attributable to their characteristic nonlinear behaviour. The source
of these difficulties can be understood geometrically [10] by recognising that the set
of all possible parameter values for the model induce a manifold within the space of
observables quantities. Parameter estimation may then be reframed as a minimisation
problem, where the aim is to find the point on the manifold closest to the experimental
data. Because nonlinear models may have multiple local minima, any optimisation
algorithm that is purely local is unlikely to converge on a global best fit.
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Figure 1: Solution to the FHN equations obtained using the parameter values α = 0.2,
β = 0.2, γ = 3 and initial conditions V0 = −1, R0 = 1.



2 Methods

2.1 Modelling

2.1.1 The dynamical system

Consider a dynamical system of N state variables in which the time-evolution of the
state vector x(t) is described by a system of N differential equations:

ẋ(t) = f(x(t),θ) (2)

which we assume, for illustrative purposes, have no closed form solution, but never-
theless can be simulated by numerical integration, given a set of parameters θ and the
initial conditions x0.

2.1.2 Observation model

We assume that noisy observations of the dynamical system in (2) are related to
the ‘true’ state through a Gaussian error model, that is, measurements made at a
given time t, conditional on the model parameters θ and the initial conditions x0,
are assumed to be iid normal random variables. Let yn denote the time series of
length T which contains T discrete time observations of the state variable xn. To
simplify our notation, we let xn(θ,x0) be a vector of length T whose components are
the corresponding numerical solution to the differential equations for each observation
time. Then, given time series measurements for a set of state variables indexed by a
set K, the joint observational likelihood may be written as:

p(y|x(θ,x0),σ
2) =

∏
k∈K

N (xk(θ,x0), σ
2
kITk

) (3)

where σ2 = (σ2
1, . . . , σ

2
k) are the observational variances, ITk

is the Tk × Tk identity
matrix and Tk is the number of discrete time observations that are available for the
state variable xk



2.1.3 Inference

For the general case in which our knowledge regarding x0, θ, and σ2 is uncertain, we
encode our current state of knowledge through an appropriate choice of priors. The
model parameters θ can then be inferred by marginalising the joint posterior shown
below,

p(x0,θ,σ
2|y) ∝ π(θ)π(σ2)π(x0)p(y|x(θ,x0),σ2) . (4)

Since x(θ,x0) has no closed form solution, the posterior density (4) has no closed form,
thus, Markov chain Monte Carlo (MCMC) methods are required for simulating from
the posterior distribution. The choice of MCMC algorithm for inference is, however,
non trivial. Nonlinearities inherit in the dynamical system can produce multiple modes
in the likelihood surface, as is known to be the case for the FHN model [8]. Such
complexities in the likelihoods topology can trap standard MCMC methods, such as
Metropolis-Hastings, in deep local minima, making it unlikely for chain to fully explore
the target distribution in any reasonable amount of time. Many techniques aimed
at circumventing these issues exist. These include: simulated annealing, simulated
tempering, parallel tempering etc. However, the the additional computational cost
associated with these methods can become prohibitively large when applied to ODE
inference problems, as every iteration of the sampler will require numerical integration
of the system of ODEs. 1

2.2 Illustrative example: FHN model

Samples were generated at 20 equally spaced time points on the interval [0, 20] by
solving the FHN equations (1) using the parameter values α = 0.2, β = 0.2, γ = 3
and the initial conditions V0 = −1, R0 = 1. Random Gaussian noise with zero mean
and 0.5 standard deviation was added to each individual sample to artificially simulate
measurement errors. The synthetic data set is shown in Figure 2.
A wide gamma prior of Γ(1, 3) was employed for each of the parameters α, β and γ.
As a simplifying assumption, we assume that both the standard deviation of the noise
process and the initial conditions are known.

1Unfortunately, time and computational constraints have prevented full exploration of the issues
discussed in this section. We make no claims whatsoever regarding the suitability of our chosen
algorithm for similar applications.
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Figure 2: Plot of the synthetic data set (black crosses) used for inferring the FHN
model parameters. The ‘true’ solution to the equations is shown in red.

2.2.1 MCMC Simulation

Simulations from the posterior distribution were performed using the robust adap-
tive Metropolis (RAM) algorithm [11]. The RAM algorithm is an adaptive random
walk Metropolis algorithm. It can be viewed as a generalisation of adaptive scaling
Metropolis (ASM) methods, in that the scaling factor used to adjust the size of the
proposal jumps is replaced by a scaling matrix S ∈ Rd×d, where d is the dimension of
the target density. Like ASM methods, the RAM algorithm attempts to coerce the
mean acceptance probability to a prefixed value through adaption of the scaling ma-
trix. The adaptive step is performed by either a rank-1 Cholesky update or downdate,
which has the same O(d2) computational complexity as that of the seminal Adaptive
Metropolis (AM) algorithm [4]. Further implementation details and pseudocode are
provided in Appendix A.

2.2.2 Computational methods

The RAM algorithm was implemented using the ANSI C programming language. Nu-
merical integration of the differential equations was performed using the SUNDIALS
CVode package [5] with both the absolute and relative tolerances set to 10−6. Ran-
dom number generation required for the Metropolis accept-reject step and sampling
of the proposal distribution was performed using the GNU Scientific Library [3]. The
algorithm was run on a 2011 Macbook Air (1.7 Ghz Intel Core i5 with 4GB RAM),
requiring approximately 18 seconds to complete 5× 104 iterations of the algorithm.



3 Results and Discussion

3.1 MCMC output analysis

5,000 posterior samples were generated from 51,000 iterations of the RAM algorithm,
where the first 1,000 values were used as burn-in and the remaining samples were
thinned by a factor of 10. Trace plots of the MCMC simulation are shown in Figure 3.
The trace plots show that all parameters have good mixing, which is further justified
by the autocorrelation plots shown Figure 4. Similar traces were observed over multiple
MCMC runs (not shown), where the initial position of the chain was selected randomly
from the prior distributions, suggesting the sampler has converged to the stationary
distribution.
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Figure 3: Trace plots for 5,000 posterior samples. The true parameters values are
depicted by the black line.

10 20 30 40 50
0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
u
to

co
rr

e
la

ti
o
n

α

10 20 30 40 50

Lag

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30
β

10 20 30 40 50
0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30
γ

Figure 4: Autocorrelation plots for the posterior samples.



3.2 Posterior summary

The posterior means (see Table 1) appear to be in close agreement with the true
values despite being inferred from a fairly sparse and noisy dataset. The β parameter
exhibits a relatively large standard deviation in contrast to the other parameters (see
also Figure 5). It is not clear why this is so and it may possibly be insignificant
altogether. Further investigation into the role of this parameter in determining the
equilibrium point of the oscillatory output is warranted. No striking correlations are
apparent from the the pairwise scatterplots shown in Figure 6.

Parameter True Value Posterior µ± σ

α 0.2 0.22 ± 0.05
β 0.2 0.26 ± 0.13
γ 3.0 2.85 ± 0.11

Table 1: Summary statistics for each of the inferred parameters of the FHN model
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Figure 5: Posterior distributions (histograms) for each of the FHN model parameters.



Figure 6: Pairwise scatter plots (red dots) and density estimates (contours) generated
from the posterior samples. Density estimates were obtained using Gaussian kernel
density estimation.



3.3 Posterior predictive distribution

Samples from the posterior predictive distribution were generated by simulating the
FHN equations for each of the posterior samples at 1,000 equally spaced time points
on the interval [0,20]. Gaussian noise having standard deviation equal to 0.5 was then
added to each sample, as per the observation model. The resulting samples are shown
below in Figure 7. Interestingly, the mean of the posterior predictive distribution is in
close agreement with the true solution to the FHN equations, despite uncertainties in
the inferred parameters.
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Figure 7: Comparison of the mean posterior predictive distribution (red line) to the
true solution (black dashed line) and the synthetic data (black crosses). The red
envelope corresponds to the smoothed 95% HPD intervals obtained at each sample
point.



4 Conclusions and future work

Bayesian statistical methods are particularly well suited to the problem of parameter
estimation in that they provide a coherent framework with which to systematically
characterise and propagate uncertainties. This information can then be utilised at
later stages in the modelling process to aid in the identification of tightly constrained
predictions made by the model. The key difficulty in the application of Bayesian
MCMC methods to nonlinear differential equation models appears to be the high com-
putational cost of repeated numerical integration. For this reason, we believe future
work should be directed towards minimising this computational bottleneck. Recently
developed methods for parameter estimation in nonlinear differentials models based
on Gaussian processes [1], which attempt to avoid numerical integration all together,
appear to be one promising avenue for future research.
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Appendices

Appendix A

Algorithm 1: Robust adaptive Metropolis

Input: p(x): d-dimensional target density
q(x): d-dimensional symmetric proposal distribution
{γn}n≥1: Nonnegative adaption weight sequence which decays to zero
α∗: Target mean acceptance probability
N : Number of iterations

Output: {x(n)}: Chain of samples
begin

Initialise x(1) such that p(x(1)) > 0
Initialise S1 ∈ Rd×d to a lower-diagonal matrix with positive diagonal
elements
for n = 2 . . . N do

// Random walk Metropolis

Compute x∗ = x(n−1) + Sn−1un where un ∼ q
Let

x(n) =

{
x∗, with probability αn = min

{
1 , p(x∗)/p(x(n−1))

}
x(n−1), otherwise

// Adaptive step

Let v =

(
γn|αn − α∗|
‖un‖2

)1/2

Sn−1un

if αn − α∗ > 0 then
Compute Sn = Sn−1 + vvT by a rank-1 Cholesky update

else
Compute Sn = Sn−1 − vvT by a rank-1 Cholesky downdate



For parameter inference in the FHN model, the adjustable parameters of the RAM
algorithm were set to the following:

Adjustable parameter Value used

Dimension d 3
Proposal density p(x) N (0, I3)
Adaptive weight sequence γn min{1, 3n−2/3} 1

Target mean acceptance probability α∗ 0.234 2

Number of iterations N 51000 3

Initial parameter values x(1) Random draw from priors
Initial scaling matrix S1 I3

Table 2: Adjustable parameter settings used for the FHN model.

1The factor of 3 is added to compensate for the expected growth or shrinkage in the scaling matrix
eigenvalues which known to be of order d−1, where d is the dimension [11].

2Theoretically optimal acceptance probability for a multidimensional proposal distribution [9].
31000 iterations were used as burn-in. Remaining samples were thinned by a factor of 10.


