
The Representation Theory of the Temperley-Lieb
Algebras

Christopher Ryba
Supervisor: Prof. G. I. Lehrer

The University of Sydney

February 2014

1 Introduction

The Temperley-Lieb algebras arise in the theory of quantum groups as endomor-
phism algebras of tensor powers of a distinguished representation of the quantised
universal enveloping algebra Uq(sl2). They are also present in mathematical physics
in the context of models for magnetism in statistical mechanics (such as the Heisen-
berg XXZ model). However, the Temperley-Lieb algebras admit a cellular structure
which allows the study of its representations from a different perspective. Information
gathered this way gives information about quantum groups and vice versa.

2 Algebras and Representations

The notion of an algebra plays a central role in what follows. An algebra over a field F
is an F -vector space A, that is equipped with a distributive multiplication. We require
that this multiplication has an identity element (which we will denote 1A) and that it
should be compatible with the scalar action of F on the vector space. That is, for all
a, b ∈ A and all λ, µ ∈ F ,

(λa)× (µb) = (λµ) (ab)

Many important examples of an F -algebras are endomorphism algebras of F -vector
spaces. Given an F -vector space V , the endomorphism algebra of V (denotedEndF (V ))
is the set of linear transformations from V to itself. Together with usual addition of



linear maps and multiplication defined by composition, we obtain the structure of an
F -algebra.

In the case where V is finite dimensional, we may choose a basis of V and identify
the linear transformations with matrices; EndF (V ) ∼= Matdim(V )(F ). Note that if V is
one dimensional, EndF (V ) simply becomes F with the usual multiplication.

Similarly to many other algebraic structures, algebras have a notion of a homomor-
phism. An F -algebra homomorphism from A to B is an F -linear map ϕ : A → B
which respects multiplication and identity elements:

ϕ(1A) = 1B

ϕ(a)ϕ(b) = ϕ(ab) for a, b ∈ A
Two algebras are isomorphic if there is a bijective homomorphism between them, and
quotients of algebras are defined analogously to quotients of rings. As one might
suspect, the usual homomorphism theorems apply. If ϕ : A → B is an algebra homo-
morphism, then A/ ker(ϕ) ∼= im(ϕ).

A representation of an F -algebra A on a F -vector space V is a homomorphism ψV

from A to EndF (V ). This can be thought of as concretely describing the abstract
relations of the algebra with matrices. An important example for any algebra is the
so-called left regular representation: take V = A, where each a ∈ A acts via left mul-
tiplication on V .

Representations of an algebra can be combined in multiple ways. It is possible to
“add” two representations ψV and ψW (on vector space V and W respectively) by
taking the direct sum, V ⊕W , with the A-action defined by ψV⊕W = ψV ⊕ ψW

Additionally, it is possible to “multiply” vector spaces with the tensor product, which
can be used to construct “products” of representations. The tensor product of two
F -vector spaces V and W is another F -vector space denoted V ⊗W . It is defined by
a universality property involving is a canonical bilinear map µ : V ×W 7→ V ⊗W
defined by µ(v, w) = v ⊗ w. This map has the property that if {vi}i∈I and {wj}j∈J
are bases of V and W respectively, V ⊗W has basis {vi ⊗ wj}(i,j)∈I×J . In particular,
dim(V ⊗W ) = dim(V )× dim(W ).



The next step for constructing tensor products of representations is to “multiply”
linear transformations: If M and N are endomorphisms of V and W respectively,
(M ⊗ N)(v ⊗ w) = Mv ⊗ Nw (for v ∈ V and w ∈ W ) defines an endomorphism of
V ⊗W .

If A is an F -algebra, the multiplication (a1 ⊗ b1) × (a2 ⊗ b2) = (a1a2) ⊗ (b1b2) gives
A⊗ A the structure of an F -algebra.

Finally, given two representations ψV and ψW of A, then ψV ⊗ ψW defines a repre-
sentation of A ⊗ A. This does not automatically become a representation of A. For
this, we need a homomorphism ∆ : A→ A⊗A. The composition ∆ ◦ (ψV ⊗ψW ) then
defines a representation of A. Such a homomorphism is called a comultiplication.

3 Quantum Groups

The theory of the Temperley-Lieb algebras is intimately connected to the quantum
group Uq(sl2(F )). Perhaps misleadingly, quantum groups are not groups, but associa-
tive algebras.

Given a field F , we let F (q) to be the field of rational functions over F (in the vari-
able q). Then, Uq(sl2(F )) is the unital associative algebra over F (q) with generators
E,F,K,K−1, subject to the following relations:

KE = q2EK

KF = q−2FK

KK−1 = K−1K = 1

EF − FE =
K −K−1

q − q−1

We will denote this algebra U . It is a “deformation” of the universal enveloping al-
gebra of the Lie algebra sl2(F ). Although the above relations are not well defined
if q = 1, by taking q → 1 (with appropriate “algebraic scaffolding”), we recover the
stated universal enveloping algebra. With similar techniques, it is possible to consider
q equal to a definite value (rather than an indeterminate).

The algebra U has many properties. Like a universal enveloping algebra, it is a Hopf



algebra; U has a comultiplication, antipode and counit, allowing the construction of
tensor products of representations, dual representations and trivial representations,
respectively. It is known that finite dimensional representations of U are semisimple
(a direct sum of irreducible representations) when q is not a root of unity.

The algebra U is equipped with a comultiplication ∆:

∆(K) = K ⊗K
∆(K−1) = K−1 ⊗K−1

∆(E) = E ⊗ 1 +K ⊗ E
∆(F ) = F ⊗K−1 + 1⊗ F

The most significant feature of ∆ is that it is not symmetric under the exchange of the
tensor factors. We say that the comultiplication is not cocommutative (this is contrast
to the case of unversal enveloping algebras of lie algebras, as well as group algebras).
However, it does satisfy a property called coassociativity. Coassociativity guarantees
associativity of tensor products; for representations of U , (X⊗Y )⊗Z ∼= X⊗ (Y ⊗Z).

Due to the noncocommutativity of U , the linear map P : V ⊗W → W ⊗ V which
interchanges tensor factors (v⊗w 7→ w⊗v) is not an isomorphism of representations of
U . In this situation a suitable isomorphism is provided by so-called R-matrices which
give rise to representations of braid groups, and appear in statistical mechanics.

There is a distinguished two dimensional irreducible representation L(1,+) of U . It is
spanned by m0 and m1, and with respect to this basis, the generators of U have the
following matrices:

ψL(1,+)(K) =

[
q 0
0 q−1

]
ψL(1,+)(K

−1) =

[
q−1 0
0 q

]
ψL(1,+)(E) =

[
0 1
0 0

]
ψL(1,+)(F ) =

[
0 0
1 0

]
At last, we arrive at the definition of the Temperley-Lieb algebra. The set of lin-
ear maps of a representation V of U that commute with the U -action is denoted



EndU(V ) = {T ∈ EndF (V ) | uTv = Tuv, ∀u ∈ U, ∀v ∈ V }. We consider the rep-
resentation V = L(1,+)⊗ L(1,+)⊗ L(1,+)⊗ · · · ⊗ L(1,+), where there are r tensor
factors. This is written V = L(1,+)⊗r for short.

The Temperley-Lieb algebra, written TLr, is EndU(L(1,+)⊗r), for r ∈ Z+.

4 Cellular Algebra Structure

TLr can also be described as a “diagram algebra”. This involves giving a vector space
basis of the algebra, together with diagrammatic multiplication rules for the basis ele-
ments.

Consider the set of diagrams consisting of two lines in a plane, each with distinguished
r points, where pairs of points are connected with nonintersecting lines (up to homo-
topy equivalence). It can be shown easily that the number of such diagrams is the rth

Catalan number 1
r+1

(
2r
r

)
by constructing bijections with any of a selection of familiar

combinatorial objects.

Diagrams can be multiplied by “concatenation”; the paths joining the second set of
r points in the first diagram are connected to the first set of r points on the sec-
ond diagram. For each closed loop in the new diagram, the outcome is multiplied by
δ = q + q−1.

Here is an example calculation in TL4:

The algebra TLr has a presentation in terms of generators u1, u2, · · · , ur−1, subject
to the following relations:

uiui±1ui = ui

ui
2 = δui

uiuj = ujui for |i− j| > 1



The ith generator corresponds to the diagram where ith and (i + 1)th points are con-
nected on the same sides (“semicircles”), and all other points are directly connected
between the two sets of points. The pair of semicircles in each generator corresponds
to a distinguished map on two tensor factors of L(1,+) (of adjacent index). This map
corresponds to the composition of a trace form on L(1,+) with a map that takes an
element x of F to x times the “quantum Casimir” for L(1,+)⊗2 (analogous to the
Casimir element in the theory of Lie algebras).

The generator u2 in TL5 is shown below.

The relation u2u1u2 = u2 in TL5 is shown below.

The Temperley-Lieb algebras can be studied using the theory of cellular algebras (which
gives an elementary method of studying a large class of associative algebras).

Each diagram may be split down the middle to obtain “tableaux” with r points, some of
which are connected by “arcs”, others not being connected to any other point (“loose
ends”). Additionally, every diagram arises by merging two tableaux with the same
number of unconnected points (there is a unique way to join the opposing loose ends
without them crossing over). Some examples of tableaux for TL4 are below.



Given any diagram equation in a Temperley-Lieb algebra, one can reflect the equation
in a vertical axis (as if looking at it in a mirror) and still obtain a valid equation; the
lines will reflect to connect the mirrored points, and the number of internal loops will
not change. This corresponds to a linear anti-involution in the algebra (by mapping
each diagram to its reflection and extending linearly). Together with aforementioned
properties, this makes the Temperley-Lieb algebras into cellular algebras.

If we consider the vector space W with a basis consisting of tableaux, it is easy to
see that the concatenation rule defines a representation of TLr on this space (where
a diagram concatenates with a tableaux to obtain another tableaux). However, the
number of arcs on a tableaux basis element can never decrease under this action. This
leads to the natural filtration {Wi} of W , where Wi is spanned by tableaux with i or
more arcs (each Wi contains the ones of larger index). Each Wi gives rise to an ideal
of TLr (corresponding to diagrams made from basis tableaux contained in Wi).

The structure of L(1,+)⊗r is related to that of TLr. By standard results from cellular
theory, TLr is semisimple (a sum of simple algebras) if and only if the representation
on Wi/Wi+1 is irreducible for each i. This in turn is equivalent to a particular ma-
trix (with rows and columns indexed by tableaux corresponding to Wi/Wi+1) having
nonzero determinant (the condition can also be stated in terms of the nondegeneracy
of a particular bilinear form).

Given two tableaux, x, y, each with i arcs, the (x, y)th entry of the matrix is cal-
culated by “multiplying” x and y as if they were Temperley-Lieb diagrams. If the
loose ends of x do not connect to those of y, then the entry is zero. Otherwise, it is
δk, where k is the number of closed loops created in performing the above computation.

Here are example calculations for TL5, in W2 and W1/W2.

Here, the relevant matrix element will evaluate to δ, because the uppermost two points
connect to form a loop, and the loose ends on either side connect to each other.



Here, the relevant matrix element will evaluate to zero, because the loose ends do
not pair up from side to side; some are connected to other loose ends on the same side.

Such calculations can determine information about the structure of the Temperley-
Lieb algebras. For example, consider TL3. There are three tableaux, one with zero
arcs, and two with one arc:

The W0/W1, the matrix is [1], due to the single tableaux with zero arcs. The de-
terminant of this matrix is 1 (it is independent of δ), so this representation is always
irreducible.

For W1, the matrix has diagonal entires equal to δ and off-diagonal entries equal to 1.
It is: [

δ 1
1 δ

]
The determinant is δ2 − 1.

This has zeroes δ = ±1, so TL3 is semisimple for all δ other than 1 and −1. Over C,
these values of δ = q+q−1 give q = exp(2πi/6), exp(−2πi/6), exp(2πi/3), exp(−2πi/3);
primitive third and sixth roots of unity. The same method may be applied in positive
characteristic.

In this way, understanding the representations of Uq(sl2(F )) can give combinatorial
results about Temperley-Lieb diagrams, and vice versa.
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