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1. Introduction

We wish to glue ideal hyperbolic tetrahedra to form hyperbolic 3-manifolds.
Ideal tetrahedra are tetrahedra which have their vertices at infinity (and so
their vertices are not actually contained within the hyperbolic space). We could
also glue typical tetrahedra to form 3-manifolds, so why do we choose to glue
ideal tetrahedra? We do so because ideal tetrahedra are easier to parametrize.
Not all gluings will result in the formation of hyperbolic 3-manifolds, the con-
ditions required for the resultant space to be a 3-manifold are stated in terms
of the tetrahedra which are to be glued; a nice parametrization allows for these
conditions to be neatly given in terms of the parameters assigned to the tetra-
hedra. Another benefit of working with ideal tetrahedra is that when we glue
tetrahedra, non-manifold points occur only along edges or at vertices, because
the vertices of ideal tetrahedra do not actually belong to the tetrahedra we
need only concern ourselves with what happens along edges. Because our spec-
ification for how we are to glue the tetrahedra will involve orientation, we give
ourselves oriented, ideal hyperbolic tetrahedra.

2. Parametrising Ideal Hyperbolic Tetrahedra up to Oriented
Congruence

We work in the upper half-space model of hyperbolic 3-space. This is the space

{(x, y, z) ∈ R3 | z > 0} along with the metric given by ds = dx2+dy2+dz2

z .
We will be interested later in the orientation preserving isometry group of this

space; this is the group Isom+(H3) ∼= PSL(2,C), where the matrix

(
a b
c d

)
is identified with the Mobius transformation z 7→ az+b

cz+d . An explanation of the
isomorphism is in order. We identify the plane z = 0 with C, and then as Figure
[1](a) illustrates, because isometries map geodesics to geodesics, the action of
isometries on geodesics is determined by the action on the endpoints at infinity.
Extending this, Figure[1](b) illustrates that then, by considering two geodesics
which intersect at that point, the action of isometries on any point in the hyper-
bolic 3-space is determined by their action on the endpoints of the geodesics at
infinity, endpoints which lie in C ∪ {∞}. The map z 7→ az+b

cz+d defines the action
on the endpoints, where we make the usual definitions regarding the symbol∞,
such as z/0 =∞ for non-zero z.
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Figure 1: (a) The action of an isometry on geodesics is determined by the
action on the endpoints at infinity (b) The action of an isometry on any point

within the hyperbolic space is determined by it’s action on geodesics

Having identified the plane at infinity, z = 0, with C we see that, in the up-
per half-space model, an ideal tetrahedron is specified by four pairwise distinct
points in C ∪ {∞}. Given an ideal tetrahedron, the link of each vertex is the
set of geodesic rays in the tetrahedron passing through that vertex. These links
can be concretely realised as the intersections of the tetrahedron with suitable
horospheres about the vertices. See Figure [2].

Figure [2]: The tetrahedron here is drawn abstractly, the vertices lie in
C ∪ {∞}; the broken lines indicate horospheres and the greek characters

represent dihedral angles

Since the geometry of horospheres is Euclidean (which is easily seen in the upper

half-space model for horospheres about ∞ by fixing z in ds = dx2+dy2+dz2

z ), all
links are Euclidean triangles.

In particular, this means that the angles of each link, which are seen to be
dihedral angles of the ideal tetrahedron, sum to π. Thus we have the following
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equations between the dihedral angles (corresponding to the red, blue, green
and yellow links respectively):

α+ β′ + γ = π

α′ + β + γ = π

α+ β + γ′ = π

α′ + β′ + γ′ = π.

It is not hard to see that these equations imply that

α = α′

β = β′

γ = γ′.

In other words, in ideal tetrahedra opposite dihedral angles are equal.

Now, we take a moment to discuss orientation. In 2-space, be it Euclidean
or hyperbolic, an orientation on a triangle is intuitively simple, and it can sim-
ply be seen as an order, up to cyclic permutation, on the three vertices of the
triangle. Suppose our triangle has vertices v1, v2 and v3. An orientation is an
order on these three vertices; there are 3! = 6 possible orderings, but up to
cyclic permutation there are only 3!/3 = 2. Thus there are two possible orien-
tations on a triangle; pictorially these are the clockwise and counterclockwise
orientations.

Moving up to three dimensions, what is an orientation on a tetrahedron? Again
it is an order on the, in this case four, vertices v1, v2, v3 and v4. There are
4! = 24 possible orderings of the vertices. In this case it isn’t as clear whether
or not orderings related via cylic permuations should be identified. We think in
another direction. Given an ordering, it is intuitive to think that a transposi-
tion, that is, a permutation of the vertices which interchanges two vertices and
leaves the remaining invariant, changes the orientation of the tetrahedron to an
opposite form. As such any permutation which is a product of an even number
of transpositions should be seen to preserve orientation and any which is a prod-
uct of an odd number of transpositions to reverse the orientation. Thus the even
permutations preserve the orientation, and an orientation on a tetrahedron is
an ordering of the vertices up to even permutations. Note the analogy with the
two dimensional case in that there the cyclic permutations correspond exactly
to the even permutations. Once more there are 2 = 4!/12 possible orientations;
pictorially these are the left-handed and right-handed orientations.

Now, given an orientation on a tetrahedron, we may naturally infer an ori-
entation on the links of its vertices. We do so by declaring that we view the
links as described by the outward normal vectors from each vertex (that is, we
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view them from inside the tetrahedron), orienting their vertices in a clockwise
manner. Our result that in ideal tetrahedra dihedral angles are equal then in
particular implies that the links of each vertex are in the same oriented similar-
ity class. See Figure [3].

Figure [3]: The links of each vertex of an ideal tetrahedron are in the same
oriented similarity class

It is clear that the oriented congruency class of an ideal tetrahedron determines
the orientated similarity class of its links because two congruent ideal tetrahedra
must have the same dihedral angles and because the two tetrahedra have the
same orientation they will induce the same orientations upon the links of their
vertices.

We assert the converse; that the oriented similarity class of the links of the
vertices of an ideal tetrahedron determine it up to oriented congruence. To
see this, suppose we have two ideal tetrahedra with links in the same oriented
similarity class. Working in the upper half-space model, we can ensure both of
our ideal tetrahedra have one vertex at ∞ via isometries. The triangles then
determined by the vertices in the complex plane are in the same oriented sim-
ilarity class. We can transform one tetrahedron into the other via a Euclidean
similarity which preserves the complex plane. Such a similarity is an orientation
preserving hyperbolic isometry.

Thus we see that parametrizing ideal tetrahedra up to oriented congruence is
equivalent to parametrizing Euclidean triangles up to oriented similarity.
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As such, we seek to parametrize Euclidean triangles up to oriented similarity.
To do this, we regard E2 as C. Given a triangle 4(t, u, v), where the vertices
t, u, v are oriented in a clockwise fashion, to the vertex v we associate the ratio

z(v) =
t− v
u− v

.

The number z(v) is the point to which the third point t is mapped when v is
sent to 0 and u to 1 via Euclidean orientation preserving similarities; namely
translation, rotation and scaling. See Figure [4].

Figure [4]: Parametrizing Euclidean triangles up to oriented similarity

Similarly, the corresponding ratios for t and u are then

z(t) =
u− t
v − t

z(u) =
v − u
t− u

.

We have the following identities

z(u) =
1

1− z(v)

z(t) =
1

1− z(u)
.

It is seen from the above identities that any one of z(t), z(u), z(v) determines
the other two. Also, note that these identities are unchanged when we cyclically
permute t, u, v.

It is clear that the similarity class of a Euclidean triangle determines the three
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values z(v), z(t) and z(u). Conversely, any one these values determine the sim-
ilarity class of the triangle.

Given an oriented Euclidean triangle, 4(t, u, v), we associate to it the triple
((t, z(t)), (u, z(u)), (v, z(v))), where the order of the entries is determined up to
cyclic permuation and where the ordering is the same up to cylic permutation
as the orientation of the triangle. In other words, we have that the following
map parametrizes Euclidean triangles up to oriented similarity,

{Oriented Euclidean triangles→ (C2)3/∼

4(t, u, v) 7→ ((t, z(t)), (u, z(u)), (v, z(v))),

where ∼ is the equivalence relation identifying those elements related by cyclic
permuations and the order of the entries in the triple is the same, up to cyclic
permutation, as the orientation of the triangle.

Practically this means that, to all oriented Euclidean triangles, to their vertices
we associate the labels z(t), z(u), z(v) and then we may speak of Euclidean tri-
angles, up to oriented similarity, in terms of their associated parameters instead.

The parametrization of Euclidean triangles up to oriented similarity may be
translated to a parametrization of ideal hyperbolic tetrahedra up to oriented
congruence. To do this, given any ideal tetrahedron, we find the parametriza-
tion of the oriented similarity class of its links, and then we give the edges of
the tetrahedron labels that were given to the corresponding vertices of the links.
See Figure [5].

Figure [5]: Translating the parametrization of Euclidean triangles to ideal
tetrahedra
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As seen in Figure [5], this results in each edge being labelled by a complex
number (6= 0, 1), opposite edges being given the same label, and the three
resulting labels, z, z′ and z′′ say, which we call the shape parameters, satisfying

z′(1− z) = z′′(1− z′) = z(1− z′′) = 1.

We align the ordering of z, z′, z′′ with the orientation of the tetrahedron. These
three values, the shape parameters, along with their ordering, then provide a
parametrization of ideal hyperbolic tetrahedra up to oriented congruence in that
the three shape parameters and their order determine the oriented congruency
class of the ideal tetrahedron and conversely the oriented congruency class of
an ideal tetrahedron determines the shape parameters that are to be associated
to its edges, and an order on these parameters (that which is aligned with the
orientation of the tetrahedron).

Working in the upper half-space model of H3, we wish to find the shape pa-
rameters of an ideal tetrahedron given its vertices. Suppose our tetrahedron
has vertices a, b, c, d ∈ C ∪ {∞}. Now, if any vertex, say d, is ∞, the shape
parameters are easy to find because the link of this vertex will be similar to
the triangle 4(a, b, c) formed in the complex plane; and so the parameters will
simply be z(a), z(b) and z(c), the order of them being determined by the orien-
tation of the tetrahedron.

In our ideal tetrahedron with vertices at a, b, c, d, suppose that a, b, c are ori-
ented in a clockwise manner (viewed from the vertex d). Via the orientation
preserving hyperbolic isometry

z 7→

√
b−d√

a−d
√
b−az −

√
b−d√

a−d
√
b−aa√

b−a√
a−db−dz −

√
b−a√

a−db−dd
=
b− d
b− a

z − a
z − d

we map these vertices to 0, 1, (c−a)(b−d)(c−d)(b−a) and∞ respectively. Because isometries

preserve shape parameters (that is to say, the congruency class of an ideal
tetrahedron determines the oriented similarity class of its links), we see that the

a, d edge is ascribed the label (c−a)(b−d)
(c−d)(b−a) ; the other two labels then being

1

1− (c−a)(b−d)
(c−d)(b−a)

=
(b− a)(c− d)

(a− d)(b− c)

for the c, d edge and

(c−a)(b−d)
(c−d)(b−a)

(c−a)(b−d)
(c−d)(b−a) − 1

=
(b− c)(a− d)

(b− d)(a− c)

for the b, d edge. Thus we see that the shape parameters of our ideal tetrahedra
are in fact cross ratios of the vertices; the cross ratios being seen to reduce to
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the earlier labels by setting d =∞.

In summary, we have a map

f : {Oriented ideal hyperbolic tetrahedra} → (C2 × C2 × C)3/∼

tetrahedron(a, b, c, d) 7→ (((a, b), (c, d), z1), ((a, c), (b, d), z2), ((a, d), (b, c), z3)),

where ∼ is as before, the ordering of the entries of the triple follows the ori-
entation of the tetrahedron; zi+1(1 − zi) = 1 where z4 = z1; and we have the
explicit evaluation

z1 =
(c− a)(b− d)

(c− d)(b− a)

z2 =
(b− c)(a− d)

(b− d)(a− c)

z3 =
(b− a)(c− d)

(a− d)(b− c)
.

3. Thurston’s Gluing Equations

Now that we have parametrized ideal tetrahedra up to oriented congruence, we
wish to glue them and note what conditions, in terms of the shape parameters,
are required for the gluing to form a hyperbolic 3-manifold. Suppose a finite
collection of ideal hyperbolic tetrahedra is glued to form a topological, non-
compact 3-manifold M ; we ask under which conditions on the tetrahedra does
this give a (possibly incomplete) hyperbolic structure on M? As explained in
the introduction, we concern ourselves only with what happens along the edges.
First and foremost we label the edges of our tetrahedra following the parametri-
sation which we now possess. Consider an edge where n tetrahedra are to meet.
Via an orientation preserving isometry we map one of the tetrahedra so that
its vertices are at 0, 1, z1,∞ (this is always possible because Isom+(H3) is triply
transitive). What is z1? Computing the appropriate cross ratio it is seen that
z1 must be the label of the 0,∞ edge — remembering that orientation preserv-
ing isometries preserve shape parameters, this is of course the same label as
that of the preimage of this edge. See Figure [6](a). Next, we wish to map the
tetrahedron glued to the preimage of the 0, z1,∞ face to glue it to this 0, z1,∞
face so that it’s vertices are 0, z1, w and ∞. What is w? Once again computing
the relavent cross ratio, we find that w must be z1z2 where z2 is the label of the
0,∞ edge of the second tetrahedron. See Figure[6](b).
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Figure [6]: Gluing tetrahedra around a common edge

Repeating this procedure we find that in the gluing, to achieve manifold points
along the edge, we must have

z1 · · · zn = 1,

where z1, . . . , zn are the labels of all the separate edges glued to form one com-
mon edge. Note that because orientation preserving isometries preserve shape
parameters, this equation is independent of “where” the gluing actually takes
place; that is to say, here we have moved the tetrahedra to have convenient ver-
tices, however because the movements were achieved via orientation preserving
isometries, the shape parameters, only parametrizing up to oriented congru-
ence, see no difference. The above equation, along with the equations relating
the parameters of a single tetrahedron to each other, are collectively known as
the hyperbolic gluing equations, or Thurston’s gluing equations.

4. Generalising the Equations to Rings

Since the hyperbolic gluing equations have integer coefficients, we may gener-
alise C to any ring with identity. Further we drop the hyperbolic geometry.
Instead, we consider 3-manifolds with triangulations, and we label the tetra-
hedra provided by the triangulations using elements from the ring. Note that
the tetrahedra provided by the triangulations will in fact be typical tetrahedra,
not ideal tetrahedra. We wish to emulate the parametrisation of the previous
section in the context of general rings with identity.

Given a compact, oriented 3-manifold M , a triangulation T of M comprises
the following information:

• a disjoint union X = tiσi of oriented Euclidean tetrahedra σi, and

• a set of orientation reversing affine homeomorphisms Φ between pairs of
codimension-1 faces in X such that no face is left unpaired and M is
homeomorphic to the quotient space X/Φ.
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We can speak of the simplices in M , which are defined to be quotients of the
σi. Note that we do not require that these simplices are embedded in M ; for
example, all four vertices may be glued to form a single vertex. However, the
interiors of these simplices are embedded. See Figure [7].

Figure [7]: Tetrahedra in the manifold may contain self-identification

Because some vertices may be identified, we will label normal triangle types in-
stead of vertices. See Figure [8](a). Further, note that each opposite edge pair
corresponds to a normal quad type as shown in Figure [8](b); we label these in-
stead of edges. Given a triangulation, we label the set of normal triangle types
and normal quadrilateral types by 4 and � respectively. An orientation on a
tetrahedron can be seen as an ordering up to cyclic permutation on the normal
quad types of the tetrahedron. If we have that the quad type q′ follows the
quad type q in this orientation, we write q → q′.

Figure [8]: (a) Normal triangle types; because the interiors of tetrahedra are
still embedded, these cannot be lost under self-identification (b) Normal quad
types; the red quad corresponds to the opposite to the pair of opposite edges,

namely the green edge and the blue edge
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Given a triangulated 3-manifold (M, T ) and a ring R with identity, a function
x : �→ R is called a solution to Thurston’s gluing equations associated to T if
and only if

1. whenever q → q′

x(q′)(1− x(q)) = (1− x(q))x(q′) = 1

2. for each edge e at which tetrahedra have been glued, if q1, . . . , qn are quads
facing e labelled cyclically around e,

x(q1) · · ·x(qn) = x(qn) · · ·x(q1) = 1.

Note that the first condition implies that both x(q) and 1− x(q) are invertible
elements. If the ring R is commutative, only one equation in both conditions is
needed, and from now on it will be assumed that R is indeed commutative.

5. Solution by Cross Ratios

We construct here a solution to Thurston’s gluing equations by emulating the
shape parameters introduced earlier in the hyperbolic context. Earlier, the
shape parameters were found to be cross ratios of the vertices, vertices which
we may view to be in the complex projective line CP 1 = C∪{∞}. The natural
generalisation of projective lines over rings is contained in the definition of the
projective line, PR1, over the ring R:

PR1 = {(a, b) ∈ R×R : Ra+Rb = R}/∼
where (a, b) ∼ (u, v)⇔ (a, b) = λ(u, v) for some unit λ ∈ R.

We look to label the vertices of our tetrahedra, provided by the triangulation
of our manifold, with elements from PR1. Following this we wish to take cross
ratios of these vertices to give labels for our normal quad types. To see how we
should define the cross ratio, we consider the case of the complex projective line
CP 1. Here we have a natural map [z1, z2] 7→ z1

z2
, where z/0 = ∞ for non-zero

z. Using this we may compute the cross ratio of four points in CP 1 as follows:([
z1
z2

]
,

[
w1

w2

]
;

[
u1
u2

]
,

[
v1
v2

])

=
( z1z2 −

v1
v2

)(w1

w2
− u1

u2
)

( z1z2 −
u1

u2
)(w1

w2
− v1

v2
)

=
z1v2−z2v1

z2v2
w1u2−w2u1

w2u2

z1u2−z2u1

z2u2

w1v2−w2v1
w2v2

=
(z1v2 − z2v1)(w1u2 − w2u1)

(z1u2 − z2u1)(w1v2 − w2v1)
.
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Analogizing, we define the cross ratio of points [(a1, a2)], [(b1, b2)], [(c1, c2)], [(d1, d2)] ∈
PR1 (in that order) as follows:

([
a1
a2

]
,

[
b1
b2

]
;

[
c1
c2

]
,

[
d1
d2

])
=

[
(a1d2 − a2d1)(b1c2 − b2c1)
(a1c2 − a2c1)(b1d2 − b2d1)

]
∈ R2/∼.

Note that the cross ratio is not necessarily in PR1. It is simple to check that
the cross ratio is well defined in the sense that replacing any of the points four
points with ∼-equivalent points does not alter the value of the cross ratio. In
the case that (a1c2−a2c1)(b1d2− b2d1) is a unit in R we naturally associate the

cross ratio with the quotient (a1d2−a2d1)(b1c2−b2c1)
(a1c2−a2c1)(b1d2−b2d1) .

To allow for a more concise presentation, we introduce the following nota-
tion. Given (a, b), (c, d) ∈ R2 we define <(a, b), (c, d)> = ad − bc, the de-

terminant of the matrix

(
a c
b d

)
. With this notation, we have that, given

[A1], [A2], [A3], [A4] ∈ PR1 the cross ratio ([A1], [A2]; [A3], [A4]) is the vector[(
R1423

R1324

)]
∈ R2/∼, where Rijkl = <Ai, Aj><Ak, Al>.

Now, given any function f : 4 → PR1 so that f(t) = f(t′) whenever two nor-
mal triangle types t, t′ are adjacent (see Figure [9] below to see what we mean
by adjacent), we define F : � → R2/∼ by F (q) = (f(t1), f(t2); f(t3), f(t4)) =
[z(q), y(q)] where t1, t2, t3, t4 are the four normal triangle types in the tetrahe-
dron σ containing q so that q separates {t1, t2} from {t3, t4} and t1 → t2 →
t3 → t4 defines the orientation of σ.

Figure [9]: Adjacent normal triangle types

Note that y(q) = −z(q′), where q → q′; this may be verified using the definition
of the cross ratio. Now, as in the case when our ring is C we have that, in the
case that y(q) is a unit for all q, x(q) = z(q)/y(q) is a solution to Thurston’s
gluing equations. This is a consequence of the following facts.

Given [A1], . . . , [An] ∈ PR1, we have the following facts.

1. ([A1], [A2]; [A3], [A4]) + ([A1], [A3]; [A4], [A2]) + ([A1], [A4]; [A2], [A3]) = 0
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2. Given [B], [C] ∈ PR1 and setting [An+1] = [A1],

n∏
i=1

(< [B], [Ai+1] >< [C], [Ai] >) =

n∏
i=1

(< [B], [Ai] >< [C], [Ai+1] >).

Proof. Both facts follow systematically by setting [Ai] = [(ai, bi)], B = [(c, d)]
and C = [(e, f)] and evaluating the expressions which appear.

Figure [10] below illustrates the motivation of the above properties.

Figure [10]: Pictorial representation of properties of the cross ratio

As mentioned earlier, this solution to the gluing equation holds when y(q) is
a unit for all q. If in our triangulation T there is no self-gluing, and our ring
is either a field or a ring with a group of units of cardinality larger than the
number of non-adjacent normal triangle types, we may arbitrarily label the
normal triangle types with distinct elements from the field or group of units
and then this solution will be possible. If however, there is self-gluing, this
solution breaks down as two normal triangle types in the same tetrahedron will
be adjacent, must then receive the same label and so y(q) will be zero for the
corresponding normal quad type q. In this case, when self-gluing is present,
we do not yet have any guide on how to solve the gluing equations. The next
section shows that the existence of a solution gives us important information
about our manifold.

6. Main Result

In the generalised context, it turns out that given that a solution to Thurston’s
equations exists at all in any commutative ring R with identity, we can ascertain
information about the manifold. In particular, we have the following.

Main result [Luo]. Suppose (M, T ) is an oriented connected closed 3-manifold
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with a triangulation T and R is a commutative ring with identity. If Thurston’s
equations on (M, T ) is solvable in R and T contains an edge which is a loop,
then there exists a homomorphism from π1(M) to PSL(2, R) sending the loop
to a non-identity element. In particular, M is not simply connected.

In this section we will work towards a proof of this fact.

Let π : M̃ → M be the universal cover and T̃ be the pull back of the tri-
angulation T of M to M̃ . Denote by 4̃ and �̃ the sets of all normal triangle
types and quad types in T̃ respectively. The covering map induces a surjection
π∗ from 4̃ and �̃ to 4 and � respectively so that π∗(d1) = π∗(d2) if and only
if d1 and d2 differ by a deck transformation element.

Suppose that x : � → R is a solution to Thurston’s gluing equations on T .
Define z : � → R∗ by z(q) = x(q), z(q′) = −1 and z(q′′) = 1 − x(q) where
q → q′ → q′′ (R∗ is the group of units of the ring R). We make these definitions
so that we have x(q) = −z(q)/z(q′); and so we set w : �→ PR1 to be the map

w(q) = [z(q),−z(q′)] and further, we let w̃ = wπ∗ be the associated map on �̃.

Given a solution x to Thurston’s gluing equations on (M, T ), we call a map

φ : 4̃ → PR1 a pseudo developing map associated to x if

1. whenever t1, t2 are two normal triangles in 4̃ are adjacent, then φ(t1) =
φ(t2),

2. if t1, t2, t3, t4 are four normal triangles in a tetrahedron σ then <Aj , Ak>
is a unit for distinct k, j = 1, 2, 3, 4 where φ(ti) = [Ai] and

[φ(t1), φ(t2);φ(t3), φ(t4)] = w̃(q)

where t1 → t2 → t3 → t4 determines the orientation of the tetrahedron σ
and q is a normal quad type in σ separating {t1, t2} from {t3, t4}.

The idea here is that we wish to label the tetrahedra in the universal cover up
above in a way that is in some sense consistent with our current labeling (the
solution x) of the tetrahedra in the manifold down below. It can be proven that,
given any solution x there exists a pseudo developing map associated to x. To
show this, we require the following lemma.

Lemma 6.1 Suppose t1, t2, t3 and t4 are the four normal triangle types in a
tetrahedron σ so that t1 → t2 → t3 → t4 determines the orientation of σ and q
is a quad type in σ separating t1, t2 from t3, t4. If φ(ti) = [Ai] ∈ PR1, i = 1, 2, 3
are defined and <Ai, Aj> is a unit in R for distinct i, j = 1, 2, 3, then there
exists a unique φ(t4) = [A4] ∈ PR1 so that [φ(t1), φ(t2);φ(t3), φ(t4)] = w̃(q).
Furthermore, the property that <Ai, Aj> is a unit in R for distinct i, j = 1, 2, 3
extends to distinct i, j = 1, 2, 3, 4.
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Proof. (Follows the proof in [1]) We use the property that, for Y ∈ GL(2, R),
(Y A1, Y A2;Y A3, Y A4) = det(Y )2(A1, A2;A3, A4), which may be verified by
direct calculation. Set Ai = (ai, bi), w̃(q) = [(c1, c2)], and consider X =

1
<A1,A2>

(
b2 −a2
−b1 a1

)
∈ GL(2, R). Upon left multiplication, X maps A1

and A2 to (1, 0) and (0, 1) respectively. By the above property, after replacing
Ai by XAi we may assume that A1 = (1, 0) and A2 = (0, 1). Then computing
the cross ratio we have (A1, A2;A3, A4) = (−a3b4,−a4b3). By the assumption
that <Ai, A3> is a unit for i = 1, 2 we see that a3 and b3 are units. It follows
that [A4] must uniquely be [−c1/b3,−c2/a3]. Then that <Ai, Aj> is a unit in
R for distinct i, j = 1, 2, 3, 4 is easy to verify.

Given the above lemma we construct our map by combinatorial continuation;
applying the following procedure on connected components of the universal cover
separately. We arbitrarily choose a tetrahedron and label three normal trian-
gle types t1, t2 and t3 by [1, 0], [0, 1] and [1, 1]. Having done so, we label
the fourth normal triangle type t4 with the unique element of PR1 such that
[φ(t1), φ(t2);φ(t3), φ(t4)] = w̃(q) as described in the Lemma 6.1. Properties of
the cross ratio then ensure that the two other quad types also receive the correct
label. Now, given any tetrahedron glued to a face of our labelled tetrahedra, it
will share three of its normal triangle types with the first tetrahedra so that these
three normal triangle types must be labelled with the label of their respective
adjacent normal triangle types. We then extend φ to the fourth normal triangle
type of this second tetrahedron once again with our lemma above. Continuing
in this fashion we will have labelled all the tetrahedra in the fashion we desire.

There is one issue which we did not address above. If a tetrahedron can be
reach from the initial tetrahedron via multiple paths, it has not been shown
that the resulting labels from both paths will coincide. This is a consequence
of the gluing equations — a proof may be found in [1].

Having constructed the pseudo developing map, we find that we have the fol-
lowing.

Theorem 6.2 Given a solution to Thurston’s equations x and an associated
pseudo developing map φ, there exists a homomorphism ρ : π1(M)→ PSL(2, R)
such that for all γ ∈ π1(M), considered as a deck transformation,

φ(γ) = ρ(γ)φ

as functions on the normal triangle types.

Proof. (Follows the proof in [1]) The proof requires the following lemma.

Lemma 6.3 Suppose A1, . . . , A4, B1, . . . , B4 ∈ R2 so that <Ai, Aj> and <Bi, Bj>
are units for distinct i, j = 1, 2, 3, 4 and [A1, A2;A3, A4] = [B1, B2;B3, B2].
Then there exists a unique X ∈ PGL(2, R) so that [XAi] = [Bi] for all i.
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Proof. (Follows the proof in [1]) As in the proof of Lemma 6.1, we may assume
A1 = B1 = (1, 0) and A2 = B2 = (0, 1). Then [XAi] = [Bi] for i = 1, 2 tells us
that X must be diagonal. Then it can be seen that the matrix we require is [X]

where X =

(
c/a 0
0 d/b

)
. Note that a and b must be units according to the

conditions that <Ai, Aj> and <Bi, Bj> are units for distinct i, j = 1, 2, 3, 4.

Now, the construction of ρ is as follows. Fix an element γ ∈ π1(M). By the

construction, π1(M) acts on M̃ , T̃ , 4̃ and �̃ so that π∗(γ) = π∗ for γ ∈ π1(M).
This implies

[φ(t1), φ(t2);φ(t3), φ(t4)] = [φ(γt1), φ(γt2);φ(γt3), φ(γt4)]

for all normal triangles t1, . . . , t4 in each tetrahedron σ in the triangulation.
By Lemma 6.3, there exists an element ρσ(γ) ∈ PSL(2, R) so that φ(γti) =
ρσ(γ)φ(ti) where the ti are in σ. We claim that ρσ(γ) = ρσ′(γ) for any two
σ, σ. Indeed, since any two tetrahedra can be joined by an edge path in the
graph G, it suffices to show that ρσ(γ) = ρσ′(γ) for two tetrahedra sharing a
codimension-1 face τ . Let t1, t2, t3 and t′1, t

′
2, t
′
3 be the normal triangles in σ and

σ′ respectively so that ti and t′i are adjacent and and t1, t2, t3 are adjacent to τ .
Now φ(ti) = φ(t′i) and γφ(ti) = γφ(t′i), therefore, ρσ(γ)φ(ti) = ρσ′(γ)φ(ti) for
i = 1, 2, 3. By the uniqueness part of Lemma 6.3, it follows that ρσ(γ) = ρσ′(γ).
The common value is denoted by ρ(γ). Given γ1, γ2 ∈ π1(M), by definition,
ρ(γ1γ2)φ = φ(γ1γ2) = ρ(γ1)φ(γ2) = ρ(γ1)ρ(γ2)φ and the uniqueness part of
Lemma 6.3, we see that ρ(γ1γ2) = ρ(γ1)ρ(γ2), that is to say, ρ is a group ho-
momorphism from π1(M) to PSL(2, R).

With the homomorphism ρ we may finally prove our main result. This proof is
reproduced from [1].

We first note that a loop in M will lift to arc in the universal cover joining
different boundary components. For suppose otherwise that there exists an
edge e ∈ T whose lift is an edge e∗ ∈ T̃ joining the same boundary component
of M̃ . Take a tetrahedron σ containing e∗ as an edge and let t1, t2, t3, t4 be all
normal triangles in σ so that t1, t2 are adjacent to e∗. By definition, the pseudo
developing map φ : 4̃ → PR1 satisfies the condition that <Aj , Ak> is a unit
for distinct k, j = 1, 2, 3, 4 where φ(ti) = [Ai]. In particular, φ(t1) 6= φ(t2). On
the other hand, since e∗ ends at the same connected component of ∂M which
is a union of adjacent normal triangles, there exists a sequence of normal trian-
gles s1 = t1, s2, . . . , sn = t2 in 4̃ so that si is adjacent to si+1. In particular,
φ(si) = φ(si+1). This implies that φ(t1) = φ(t2) contradicting the fact that
φ(t1) 6= φ(t2).

Now, suppose that e is an edge in T ending at the same vertex v in T , let
γ ∈ π1(M,v) be the deck transformation element corresponding to the loop
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e. We claim that ρ(γ) 6= id in PSL(2, R). Indeed, suppose e∗ is the lift-
ing of e. Then by the statement just proved, e∗ has two distinct vertices u1
and u2 in M̃ and φ(u1) 6= φ(u2). By definition γ(u1) = u2. It follows that
φ(u2) = φ(γu1) = ρ(γ)φ(u1). Since φ(u1) 6= φ(u2), we obtain ρ(γ) 6= id. This
proves our main result.

7. Examples of Solving Thurston’s Equations

Our result from the previous section motivates the study of the existence of
solutions in rings R to Thurston’s equations for triangulations of 3-manifolds.
Here we provide some examples of solving the equations in some finite rings.
These examples are taken from [1].

If R = F3, the field with three elements, then since no quad may receive the
labels 0 or 1 (because of the parameter relations), each edge must be labelled 2.
At each edge the gluing equation then becomes 2k = 1 where k is the number
of tetrahedra which meet at the edge. This is true if and only if k is even. Thus
the gluing equations are solvable in F3 if and only if each edge has even degree.

If R = F5 = {0, 1, 2, 3, 4}, again no quad may receive the labels 0 or 1; in this
case the label of each quad may be 2, 3 or 4. Since 1 = 24, 2 = 21, 3 = 23 and
4 = 22 each label must be 2k for some k ∈ {1, 2, 3}. Because 1/(1−2) = 4 = 22,
1/(1 − 3) = 2 = 21 and 1/(1 − 4) = 3 = 23, we see that there are three, and
exactly three, ways to label the quads in each tetrahedron — by labelling using
2,4 and 3, in that order, following the orientation of the quads; there being three
possible ways to do this. This gives a solution to the gluing equations if and
only if at each edge, the powers of 2 taken from each label sum to a multiple of
four.

If R = F22 = {0, 1, a, b} where b = a + 1 = a2 and a3 = 1, we have that
the quad labels may be a or b. Since 1/(1− a) = a and 1/(1− b) = b, either all
the quads in a tetrahedron are labelled a, or all are labelled b = a2. Thus for
us to have a solution to the gluing equations, we must have that at each edge,
the sum of the number of tetrahedron with all labels a and twice the number of
tetraheron with all labels b must be a multiple of 3.

These are simple examples which can be worked out by hand. Our direction
of research from here is to use the computer software Regina and Singular to
first provide us with triangulations of well-known 3-manifolds and then to study
solution sets, over various rings, of the gluing equations corresponding to these
triangulations. The aim is to develop general procedures, for particular rings,
for determining whether or not a solution exists to the gluing equations.
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