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1 Introduction

This summer I have spent six weeks of my holidays working on a research project
funded by the AMSI. The title of my project was Euler’s Theorem, however I learnt
far more than a single theorem. My project consisted of two parts: studying a topic
of mathematics called simplicial homology so as to prove Euler’s theorem and then
applying what I had learnt to answer several research questions. In this report I shall
elaborate further on what I have learnt regarding simplicial homology and discuss the
aims and outcomes of my research.

2 Preliminaries

The foundation of simplicial homology is called a simplex. A p-simplex is essentially the
p-dimensional analog of a triangle. For instance a zero-simplex is a point, a one-simplex
is a line segment and a two-simplex is a triangle and so on.
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Often the notation σk is used to denote a simplex with k + 1 vertices. A simplex σk

is a face of a simplex σn, k ≤ n, means that each vertex of σk is a vertex of σn. This
fairly intuitive notion is illustrated by way of example below.
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Here the simplex 〈AB〉 is a face of the simplex 〈ABC〉.
The next most fundamental construction is called a geometric complex which is

essentially a special collection of simplices. The complex is a ‘special’ collection in that
it is a set of simplices satisfying two properties. The first property is that every face
of a member of the set must also be within the set. The second property is that all
simplices are properly joined , meaning that the intersection of any two simplices is
either empty or a face of both.

Properly Joined Not Properly Joined

The polyhedron associated with the complex K is the union of the members of K
with the Euclidean subspace topology. If the polyhedron associated with the complex
K is homeomorphic to a topological space X then that space is said to be triangulable,
and K is a triangulation of X.

A simplex can be oriented by choosing an ordering for the vertices. For example:
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Ordering: a0 < a1
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Ordering: a0 < a1 < a2

The equivalence class of even permutations of the ordering of vertices determines
determines the positively oriented simplex, +σn, whilst the equivalence class of odd
permutations determines the negatively oriented simplex, −σn. A complex is said to
be oriented if each of it’s simplices is oriented.

Definition 2.1. Let K be an oriented geometric complex. If p is a positive integer,
then a p-dimensional chain is a function, cp from the family of simplices in K to the
integers such that for each p simplex σp, cp(−σp) = −cp(−σp). With the operation
of pointwise addition the set of all p-dimensional chains forms a group called the p-
dimensional chain group.

An elementary p-chain is a chain with the property that for each simplex δp distinct
from σp, cp(δ

n) = 0, and cp(σ
p) = g. The notation, g · σp, is frequently used to denote

the p-chain cp(+σ
p) = g. An arbitrary chain may be written as a finite summation of

these elementary chains as follows:

cp =

αp∑
i=1

gi · σpi

where αp is the number of p simplices.
Given two simplices σp and σp−1, the incidence number, [σp, σp−1], is equal to zero

if σp−1 is not a face of σp otherwise it is either +1 or −1 depending on the orientation.
Label the vertices of σp−1 as a0, ..., ap−1 and let v denote the vertex of σp which is not
in σp−1, then if +σp = 〈va0...ap−1〉 the incidence number is 1, and if −σp = 〈va0...ap−1〉
the incidence number is -1.

The boundary of an elementary p-chain g · σp (p ≥ 1) is defined as follows:

∂(g · σp+1) =
∑

[σp, σp−1
i ]g · σpi

The boundary of the 1 · 〈a0a1a2〉 is 〈a1a2〉 - 〈a0a2〉 + 〈a0a1〉 (see figure below).
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The boundary operator is extended by linearity to apply to general p-dimensional
chains. In particular:

Cp+1
∂p+1−−→ Cp

∂p−→ Cp−1

It can be proven that for any p ∈ N and for any (p+1)-dimensional chain cp+1,

∂p (∂p+1 (cp+1)) = 0. (1)

A p-dimensional cycle is a p-dimensional chain, z1 such that ∂ (z1) = 0. A p dimen-
sional boundary is a chain, b1 which there exists a (p+1)-dimensional chain, cp+1, such
that ∂ (cp+1) = b1.

Clearly every boundary is a cycle because of Equation 1, however the question: is
every cycle a boundary is an important question which leads into the development of
the concept of homology. The answer to the question is of course no, in particular
cycles which are not boundaries are called non-bounding cycles. In homology theory
the non-bounding cycles are the interesting ones as they provide a way by which we
can associate an algebraic structure to a topological space.

Two p-dimensional cycles, w1 and z1 are said to be homologous to each other, ∼,
if there exists a (p+1)-dimension chain, cp+1, such that:

w1 − z1 = ∂ (cp+1)

The following is an example of two cycles that are homologous to each other:
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The equivalence relations, ∼, partitions the group of p-dimensional cycles into cells
called homology classes. It can be shown that the cell:

{zp ∈ Zp(K) : zp ∼ wp}

is equivalent to the left coset:

wp +Bp(K) = {wp + ∂(cp+1) : cp+1 ∈ Cp+1(K)}

The set of all such left cosets along with the appropriate binary operation is called
the p-dimensional homology group. In particular the p-dimensional homology group is
the following quotient group:

Hp(K) = Zp/Bp

The rank of the free part of the p dimensional homology group is called the pth
betti number and denoted Rp(K).

Definition 2.2. If K is a complex of dimension n, the number

χ(K) =
n∑
p=0

(−1)pRp(K) (2)

is called the Euler characteristic of K.

If K1 and K2 are two triangulations of the same surface, Σ, then Rp(K1) = Rp(K2)
and so it makes sense to talk about the betti numbers of the surface Σ, Rp(Σ) and
consequently it also makes sense to talk about the Euler characteristic of a surface. The
betti numbers and consequently the Euler characteristic are also topological invariants
which means that if two spaces are homeomorphic to each other then they will have
the same betti numbers, and Euler characteristic.

3 Euler’s Theorem

Euler’s theorem relates the number of edges, vertices and faces any simple polyhedra
has by the equation V − E + F = 2. Where a simple polyhedron is just a rectilin-
ear polyhedron (a solid in 3-space bounded by convex polygons) whose boundary is
homeomorphic to a sphere.

There are several ways of proving this theorem, the one that I studied is actually a
proof of a generalisation of Euler’s theorem called the Euler-Poincare Theorem. Below
is a statement of the Euler-Poincare theorem, for a full proof refer to ‘Basic Concepts
of Algebraic Topology’ by Fred H. Croom.



Theorem 3.1 (The Euler-Poincare Theorem). Let K be an oriented geometric complex
of dimension n, and for p = 0, 1, . . . , n let αp denote the number of p-simplices of K.
Then

n∑
p=0

(−1)pαp =
n∑
p=0

(−1)pRp(K)

where Rp(K) denotes the pth betti number of K.

At first glance it may not be immediately obvious how this generalises Euler’s
theorem, and indeed there are several intermitent steps required to convince oneself
that it does. The subsequent argument closely follows one produced by Croom (1978).

Consider a simple polyhedron P as specified in Euler’s Theorem. If all the faces
were triangular then

V − E + F = α0 − α1 + α2

= 2.

by the Euler-Poincare theorem since the Euler characteristic of a sphere is 2. However
the faces of a simple polyhedron needn’t be triangular.

Consider a simple polyhedra, P, with at least one non-triangular face, S. Suppose
that S has n0 vertices, n1 edges and 1 face, then V − E + F = n0 − n1 + 1. S can
be triangulated by considering a new vertex, v, in the interior of the polygon S and
joining all other vertices to v with a line segment to create new faces, and edges.

v

During this process:

1. The number of vertices changes from n0 to n0 + 1

2. The number of edges changes from n1 to n1 + n0

3. The number of faces changes from 1 to n0



Now consider the effect of this triangulation on the value of V − E + F .
V − E + F = (n0 + 1)− (n1 + n0) + n0 = n0 − n1 + 1.

So the triangulation process does not have any affect on the value of V − E + F .
Suppose that by triangulating each face we obtain the polyhedron P ′ and a triangula-
tion K consisting of the faces, edges and vertices of P ′. Then K is a triangulation of
P ′ and consequently a triangulation of a sphere. The final count of V − E + F which
is α0 − α1 + α2 will be the same as the initial V − E + F .

Finally applying the Euler-Poincare Theorem:

α0 − α1 + α2 = χ(K)

∴ V − E + F = 2.

4 Triangulations

4.1 The Trade Off

When triangulating any topological space there is always a trade off between the tri-
angulation being easy to draw and the triangulation being easy to work with. The
objective of this section was to investigate some triangulations which satisfy both these
criterion. The main topological spaces we shall look at in this section are orientable
surfaces.

If a 2-dimensional manifold is triangulable each of it’s triangulations will be a
2-pseudo manifold. A 2-psuedo manifold is a complex like any other triangulation,
however with three additional conditions:

1. Each simplex of K is a face of some n-simplex of K.

2. Each 1-simplex is a face of exactly two 2-simplexes of K.

3. Given a pair σn1 and σn2 of n-simplices of K, there is a sequence of n simplices
beginnning with σn1 and ending with σn2 such that any two successive terms of
the sequence have a common (n− 1)-face.

The second property in conjunction with the Euler-Poincare Theorem affords us
the ability to prove the following three relationships.

Theorem 4.1. Let K be a 2-pseudomanifold with α0 vertices, α1 1-simplices, and α2

2-simplices. Then

1. 3α2 = 2α1



2. α1 = 3 (α0 − χ(K))

3. α0 ≥ 1
2

(
7 +

√
49− 24χ(K)

)
.

The one of most importance to us in this context is the third which gives us a way
of determining a tight lower bound for the number of vertices a triangulation requires.

We see that a sphere for example having Euler characteristic equal to 2 requires at
least 4 vertices, 6 edges and 4 faces. This is exactly the number of vertices, edges and
faces the tetrahedron has (which is a triangulation of the sphere), and so we call the
tetrahedron (or more precisely the complex that the tetrahedron is associated to) the
optimal triangulation of the sphere.

Similarly, the Euler characteristic of the torus is zero. This means that the torus
requires at least seven vertices to triangulate. In particular a triangulation of the torus
with seven vertices is possible and has a 3d representation called Csaszar’s torus [2].
However, this triangulation is difficult to visualise and so although it is the easiest to
compute with more frequently a different triangulation that involves nine vertices is
used.

4.2 A general method for triangulating an orientable surface
of genus g.

There is a theorem in topology called the Classification theorem that says that any
non-empty, compact, connected 2-manifold is homeomorphic to one of the following: a
2-sphere, a connected sum of r tori where r ≥ 1 or the connected sum of k projective
planes k ≥ 1. Connected here simply means that the topological space of interest
cannot be written as the disjoint union of two or more non-empty open sets.

A surface homeomorphic to either a sphere or a connected sum of r tori is ori-
entable and a surface homeomorphic to the connected sum of r projective planes is
non-orientable. Therefore, any orientable surface is homeomorphic to either a sphere,
or a connected sum of r tori.

The sphere can be triangulated with a tetrahedron. The torus however is slightly
more difficult to triangulate and requires more thought. The torus is homeomorphic
to a rectangle with both left and right sides associated and top and bottom associated
as seen in the figure below:



It is sufficient for us to triangulate the space instead because then our triangula-
tion, K, will have associated polyhedron |K| that is homeomorphic to this rectangle
which is homeomorphic to a torus, and therefore the associated polyhedron will be
homeomorphic to a torus and so a triangulation of a torus.

A triangulation of the torus appears below. This triangulation is frequently used
in texts and in particular it is the one introduced in the text by Croom F.
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Figure 1 is a representation of this triangulation in three dimensional space.
This triangulation can be used as a building block for other triangulations of higher

genus orientable surfaces, by ‘glueing’ appropriate edges together and removing several
simplicies.

From the triangulation of the torus we can arrive at a triangulation for the two
torus. The two torus is simply the connected sum of two 1-tori. This means that
it is obtained by removing a disc from each of two 1-tori and connecting them with
a cyclinder. An anaolgous procedure that can be performed on two polyhedra by
simply removing one of the rectangular faces (this includes two 2-simplices and one



Figure 1: 3d Realisation of the Triangulation of a Torus

1-simplex) from each of the polyhedra, and pairing the corresponding sides of the
rectangle to each other. A similar procedure can be repeated a number of times to
produce a triangulation of an orientable surface of genus g, as illustrated for g = 3 in
figure 2.

Figure 2: Triangulation of a Surface of Genus 3

Using this method of triangulating a surface of genus g I was able to prove the
following theorem:



Theorem 4.2. If Σ is an orientable surface then the Euler characteristic of the surface
χ(Σ) = 2− 2g where g is a non-negative integer.

5 The Gauss Bonnet Theorem

The Gauss Bonnet Theorem is a beautiful mathematical result that connects a surface’s
geometry to its topology. In particular, the Gauss Bonnet Theorem is as follows:

Theorem 5.1 (Gauss Bonnet Theorem- Continuous). If Σ is a closed oriented surface
then: ∫

Σ

KdA = χ(Σ) (3)

where K is the Gaussian cature and χ is the Euler characteristic.

The Gaussian curvature at a point p of an orientable surface Σ is obtained as follows.
First chose a direction for the normal vector which can always be done because the
surface is orientable. Take a vector v tangent to Σ at p, then span{n, v}∩Σ is a curve
in 3-dimensional space. Define the curvature, λ, at this point to be the reciprocal of
the radius of the osculating circle, where here what is meant by osculating circle is a
circle passing through p and two points on each side of p infinitesimally far apart.

The value of λ clearly depends on the tangent vector v chosen. The maximum
and minimum curvatures λ1 and λ2 found by choosing v appropriately are called the
principal curvatures at p. The product of these principle curvatures, K = λ1λ2, is the
Gaussian curvature at p.

For a full proof of this result see Murray (2011).
The discrete version of this theorem (also called The Gauss Bonnet Theorem) is

quite similar.

Theorem 5.2 (The Gauss Bonnet Theorem- Discrete). If K is a polyhedron with α0

vertices, α1 edges and α2 faces then:∑
p∈K

K(p)

2π
= χ(K)

where K is zero at all points not vertices, and at the vertices it is defined to be the
deficit angle at that vertex. Where:

Deficit at p = 2π −
∑

Angles around vertex.



Proof. ∑
p∈K

K(p)

2π
=
∑
p∈K

Deficit at p

2π

=
∑
p∈K

2π − Angles at p

2π

= α0 −
1

2π

∑
p∈K

Angles at p

= α0 −
1

2π
(πα2)

= α0 −
α2

2
+

3

2
α2 −

3

2
α2

= α2 − α1 + α0

= χ(K)

The proof currently only holds true for polyhedron with triangular faces. However,
using a similar argument to that we used when proving the Eule-Poincare Theorem is
a generalisation of Euler’s theorem we would easily be able to extend this.

6 Conclusion

This report has been intended to provided the reader with an appreciation of what I
have been working with for the past six weeks. I began with some preliminaries followed
by a statement of the Euler-Poincare theorem which we showed was a generalisation of
the Euler’s theorem. I have ommited any lengthy proofs of the Euler-Poincare theorem
as I do not believe they have a place here in my report, however I suggest the interested
reader should investigate this further in Croom’s text.

I then moved to a discussion of the research topics. The first was about the trade
off between how easy a triangulation is to draw and how easy it was to compute with.
The second regarded finding a general way to triangulate an orientable surface and we
concluded with a mention of the discrete Gauss Bonnet theorem which I was able to
prove.

This summer has been an invaluable experience for me. I have met new people,
learnt mathematics that I wouldn’t have encountered until honours otherwise and I
have developed a better understanding of what honours might involve. I would like



to thank my supervisor Professor Michael Murray as well as AMSI for making this
experience possible. I would certainly recommend this to future students.
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