

Representations of the General Linear Algebra on Polynomial Rings over C Lydia Byrne School of Mathematical and Statistics, University of Sydney

I have been looking at a representation of the general linear algebra of gl_n and $gl_n + gl_m$ on polynomial rings over C using differential operators. These representations are completely reducible. Moreover, these rings can be written as a direct sum of irreducible submodules in which each submodule appears only once.

 gl_n on $C[x_1,...,x_n]$

Let E_{ij} be the standard basis for gI_n , which implies $[E_{ij}, E_{kl}] = \delta_{ik}E_{il} - \delta_{il}E_{kj}$. Define a linear map φ : $gI_n \rightarrow \varphi$

End(C[x₁,...x_n]) by $\varphi(E_{ij}) = x_i \frac{\partial}{\partial x_i}$. In order to see that this is a representation, and hence that C[x₁,...x_n]

(which we'll often write as C[X]) is a gl_n-module, we need to show that φ preserves the bracket, i.e. $\varphi([E_{ij}, C_{ij}])$ E_{k}]) = [$\varphi(E_{ii}), \varphi(E_{k})$]. A simple calculation shows that this is the case, and thus φ is an algebra representation, and C[X] a gl_n module.

Irreducible submodules of C[X]

The action of an element E_{ij} in gl_n permutes an element f(X) of C[X] in a predictable way. If a term in f(X)contains x_i , for example, E_{ij} swaps one copy of that term with xi. If a term in f(X) doesn't contain x_i , it is reduced to 0.

E.g.
$$E_{12}(x_1 x_2 x_3 + x_1) = (x_1 x_2 x_3 + x_1) = (x_1)^2 x_3$$

Notice that while the action of gl_n permutes indices of terms in a polynomial, it doesn't change the degree of a term, unless it kills the term off entirely. So the spaces of 'homogeneous polynomials' (eg. $\langle x_1, x_2, ..., x_n \rangle$, $<\{(x_1)^2, x_1, x_2, ..., (x_n)^2\}$, etc) are subspaces of C[X] which are invariant under the action of gl_n — they are gl_n-submodules. We will call the space of homogeneous polynomials of degree k 'V_k'. These spaces are irreducible (they have no non-trivial submodules) since gl_n acts transitively on V_k . Thus

$$\mathbb{C}[x_1, ..., x_n] = \bigoplus_{k \ge 0} V_k$$

It turns out that the

space V_k can be constructed by a linear combinations of a single vector $(x_1)^k$ and its image under the action of $\{E_{ij} \mid i > j\}$. This vector, which also satisfies various other properties, is known as the 'highest weight vector' for the space V_k

$(gl_n + gl_m)$ - modules

We can also make the ring $C[x_1^1, x_1^2, ..., x_1^m, ..., x_n^1, ..., x_n^m]$ into a $(gl_n + gl_m)$ module using differential operators. Again the spaces of homogeneous polynomials, V_p , are submodules of C[X], but this time they're not irreducible. Highest weight vectors for the irreducible spaces are products of Δ_k , where $k \leq min\{n, m\}$, and

$$\Delta_k = det \left(\begin{array}{ccc} x_1^1 & \dots & x_1^k \\ \vdots & \ddots & \vdots \\ x_k^1 & \dots & x_k^k \end{array} \right)_{\cdot}$$