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The problem 

"
   Genomic and other omic data can be affected by 

unwanted variation.  "
"
   For example, batch effects due to time, space, 

equipment, operators, reagents, sample source, 
sample quality,  environmental conditions,…the list 
goes on…  "

"
   Also we often wish to combine data, both within and 

across platforms. Differences between studies and 
platforms need to be dealt with."
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A few examples"
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Data structure"

In each of following examples, our data has the form"
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m	  rows	  =	  samples	  
typically	  10s,	  100s	  
and	  at	  7mes	  1,000s	  

n	  columns	  =	  genes	  (~20,000),	  or	  	  SNPs	  	  
=	  DNA	  variants	  (up	  to	  2	  million)	  ,	  or	  …	  

m	  

n	  



Snapshot view  
(SVD, PCA, MDS…)"
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Data	  matrix	   ≈	  

m	  

n	   2	   n	  

2	  

m	  

If	  we	  apply	  the	  (suitably	  scaled)	  
row	  eigenvectors	  to	  the	  rows	  of	  
the	  data	  matrix,	  we	  get	  2	  values	  	  
for	  each	  sample.	  These	  we	  plot,	  
see	  next	  few	  slides.	  



Artifact (batch) can overwhelm biology  
Gene expression microarrays 

 
"

Adapted	  from	  Lazar	  C	  et	  al.	  	  
Brief	  Bioinform	  2013	  
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From: J Novembre et al. Nature 456 (2008) 

SNP	  genotypes:	  popula7on	  structure	  within	  Europe.	  

There	  are	  	  
situa7ons	  	  
in	  which	  we	  
would	  like	  to	  
remove	  such	  
structure!	  



A microarray experiment with central  
retina tissue from the rd1 mouse: 4 times x 3!

Light	  blue:	  2	  months	  
Dark	  blue:	  4	  months	  
Purple:	  6	  months	  
Red:	  	  8	  months	  

	  
	  
	  

Ideally	  we	  would	  have	  	  
seen	  4	  7ght	  groups	  of	  	  
3	  !,	  !,	  !	  and	  !	  resp.	  	  	  	  

	  	  	  
	  	  	  
	  	  	  
Pr
in
ci
pa
l	  c
om

po
ne

nt
	  2
	  	  	  

Principal	  component	  1	  	  

Very	  severe	  	  
batch	  effects	  

rd1	  is	  a	  mouse	  model	  of	  re8ni8s	  pigmentosa:	  loss	  of	  rod	  
photoreceptors,	  followed	  by	  that	  of	  cone	  photoreceptors	  



 RNA-seq data: batch corresponds to plate barcode "

82 AML samples"
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PC2 vs PC1 for 12 zebrafish RNA-seq runs:  
3 treated vs 3 control  (in duplicate)"
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The	  biology	  is	  	  
not	  evident	  in	  	  
the	  first	  2	  PCs	  
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Nature	  Reviews	  Gene/cs,	  	  vol	  11,	  October	  2010,	  p.	  733	  

They	  iden7fy	  fatally	  flawed	  studies!	  



Combining 3 experiments"

•  Three microarray gene expression experiments 
carried out at different times are all comparisons 
of the form"

             Knock-Out (3X) vs Wild-Type (3X)  "
•  All are in T-cells, and while the three KOs differ 

(Id2, Tbet, Blimp), the WT mice are the same. "
•  The idea is to combine the three experiments into 

one,  to benefit from the increased WT replication, 
and to compare the different KOs. "
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        Raw                   Quantile-normalized"
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Blue:	  wild-‐type,	  Red:	  knock-‐out.	  
Shapes:	  Different	  experiments	  (KOs)	  



LC-MS"

GC-MS"

Mi	  

Illumina	  GA-‐2	  
Affymetrix	  

Agilent	   Illumina	  

Microarrays	  

HiSeq	  

MiSeq	  



Illumina Infinium Human Methylation 
Beadchips : a special problem "

27k	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  450k	  	  	  	  	  	  	  

The 27k probes are on the 450k chip. "
Wanted: to combine data from these two arrays."



Some scientific goals sought using  
gene expression microarrays and 

analogous platforms  
"

• Quantification of expression"
•  Differential Expression (DE) "
•  Classification "
•  Clustering"
•  Correlating"
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Some consequences of                
Unwanted Variation"

•  Poor quantification of expression"
•  False discoveries (type 1 errors)"
•  Missed discoveries (type 2 errors)"
•  Incorrect predictions"
•  Artificial clusters"
•  Wrong correlations"
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Aim for today "

 To describe some ways of"
 "
•  identifying and removing (i.e. adjusting for) 

unwanted factors, when aiming to achieve 
these goals, and "

•  telling whether or not it helped."
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I will begin with Differential Expression"
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The model we and others use"

 m samples, n genes, k unwanted factors"
      "
              Ym×n = Xm×pβp×n + Wm×kαk×n + εm×n      %
%
  where "
  Y is a matrix of gene expression measurments, observed,"
  X carries the factors of interest, observed,"
  β are gene coefficients, unobserved, "
  W carries unwanted factors, unobserved, "
  α  are gene coefficients, unobserved,    "
  ε are errors, unobserved."
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The model we use in pictures "
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	  yij	  	  	  	  	  	  	  =	  	  	  	  	  	  	  	  xiβj	  	  	  	  	  	  	  	  +	  	  	  	  	  	  	  wiαj	  	  	  	  	  	  	  	  	  	  +	  	  	  	  	  	  	  	  εij	  	  



Relation to an econometric model"

% % % %Yit = Xit’β + uit  , "
where Xit   is a p×1 vector of observable 
regressors, β is a p×1 vector of unknown 
coefficients, and uit  has a common factor structure"
% % % %uit = λi’Ft + εit  , "

where λi  is a vector of factor loadings and Ft  is a 
vector of common factors, and the  εit  are 
idiosyncratic errors, i=1,…N cross-sectional units, 
t=1,…,T time periods.   This is a model for panel 
data, Bai (2005), where interest is in estimating β. 
Often N >> T. Note the difference between the 2 models."
"



The model, 2"
      %
Our goal: for differential expression, to estimate β.%
"
Note: W is unobserved, Otherwise, this is a standard 

linear model. "
Our strategy: use factor analysis to estimate W%
"
There are identifiability issues"
•  The correlation between X and W is unknown"
•  β and α are not identifiable"
%
(The examples we use below have p=1.)"
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Identifiability: we don’t know the 
correlation of W (k=1) with X!
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Two	  samples	  
Each	  dot	  a	  gene	  



Some ways of dealing with these problems        
with gene expression microarrays"

•  Standard linear regression"
•  EB linear regression (ComBat)"
•  Naïve factor analysis (SVD)"
•  Full Bayes using MCMC "
•  Variational Bayes (VIBES, Infer.NET, PEER)"
•  Surrogate Variable Analysis (SVA)"
•  Linear model with sparsity (LEAPP)"
•  Mixed model analysis (ICE)"

"
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We might have genes not affected by X!
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Call	  such	  genes	  nega7ve	  controls.	  



Our solution: Use control genes  
"

Negative controls: Assume βj = 0.%
"
Positive controls: Assume  βj ≠ 0.%

27	  

“controls” in this context means "
“controls w.r.t. differential expression”"



Some history"

•  Lucas et al (2006) Sparse Statistical Modelling in Gene 
Expression Genomics, created covariates from PCA 
based on signal from control and housekeeping probes"

•  Behzadi et al, (2007) A component based noise 
correction method (CompCor) for BOLD and perfusion 
based fMRI Neuroimaging.Ccreated covariates from 
PCA based on signal from  “noise ROI” (white matter, 
CSF)"

•  Tradition in analytical chemistry/metabolomics: use of 
“internal standards” "
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Using the negative controls c  
 
"                          Yc = Wαc + εc "

"
Just do a factor analysis on the negative controls!"
"
Examples of negative controls "
•  housekeeping genes, "
•  spiked-in controls"
•  genes chosen carefully"

                    This works!"
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Introducing the two-step: RUV-2"

1. Do a factor analysis on Yc to estimate W.%
2. Then regress Y on X and the estimated W to get        

an estimate of β adjusted for W.%

     "
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There are many ways to do the factor analysis, including "
SVD,  the EM-algorithm, and using Infer.NET (variational "
Bayes), the last two needing a probability model."
"
SVD: Write Yc	  =	  UΛVT	  ,	  	  then	  put	  W^	  =	  UΛk	  ,	  Λk	  	  =	  k	  largest.	  
"
"



Ex: gender differences in the brain 
(Vawter et al, Neuropsychopharmacology 2004)"

•  5 men, 5 women"
•  3 brain regions (AnCing, DLPFC, Cb)"
•  Each sample done in 3 labs"
•  2 Affymetrix chip types:  HGU95a, HGU95av2"
•  There should be (5+5) × 3 × 3 = 90 arrays, but 6 

are missing, so there are just 84."
"
   We’ll ignore regions, and focus on gender. "
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Ex: gender differences in the brain, 2"

•  12,685 probe sets"
•  799 housekeeping genes, 33 spike-in negative 

controls"
•  Positive controls: genes on the Y and X chromosomes"

 There’s no connection between Y and X here and the Y 
and X in my model – they are italicised, and colored!"
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Gender differences in the brain 
# X/Y genes in the top 40 "
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Preprocessing = standard RMA"

Method	   W/o	  preprocessing	   With	  preprocessing	  

No	   7	   13	  

Regression	   6	   16	  

SVA	  (IRW)	   6	   17	  

ComBat	   14	   17	  

RUV2-‐SVD	   22	   20	  

RUV2-‐EM	   22	   22	  



How did we find k?"
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Possible ways   
to determine k!

•  Scree plots"
•  Quality measures/plots"
    - p-value histograms"
    - RLE plots"
•  More math"
   - hypothesis tests"
   - move beyond factor                                                    
"analysis"

•  Positive controls"
" 35	  



Number	  of	  X/Y	  genes	  in	  Top	  20	  /40	  

Top 20                    Top 40 
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What next?"
•  We have an alternative to RUV2 called RUV4, 

which has some advantages. "
•  We have a form of RUV4 called RUVinv for 

which we do not need to estimate k. "
•  In all applications, the main issue is: what do we 

use as negative controls ? We can derive 
empirical negative control genes.  "

•  We can ridge to improve conditioning"
•  We can smooth the gene-specific variances and 

get better Type 1 error control"
Details in UC Berkeley Statistics Technical Report #820"

"
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Gender data, 4: not preprocessed"
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Method	   #X/Y	  in	  top	  100	   Type	  1	  error	  ×	  100	  

Unadjusted	   10	   0	  
SVA-‐IRW	   12	   0	  
LEAPP	   19	   1	  
ICE	  	   17	   0	  
RUV4	  (HK)	   29	   12	  
RUVinv	  (HK)	   26	   7	  
RUVinv-‐evar	  (HK)	   26	   6	  
RUVrinv-‐evar	  (HK)	   28	   6	  
RUVrinv-‐evar	  (full)	   32	   6	  
RUVrinv-‐evar	  (emp)	   30	   6	  



Relation of negative controls to 
instrumental variables"

Instruments are variables that are correlated with 
the factor of interest but uncorrelated with the error 
term (or in our case, the unwanted variation). "
They	  can	  be	  used	  to	  obtain	  unbiased	  es7mates	  of	  the	  
effect	  of	  interest	  (in	  our	  case,	  β	  ).	  "
Let V be a full rank m×r matrix of instruments such 
that m > r ≥ p, such that V’W = 0, and such that 
V’X is full rank. The IVLS estimator of β would be  "
  " "          %%
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[X 'V (V 'V )−1V 'X]−1X 'V (V 'V )−1V 'Y



Analogous formulae"

Alterna7vely,	  we	  may	  write	  the	  IVLS	  es7mator	  as	  
"
"
"
"
Compare	  this	  to	  the	  RUV-‐2	  es7mator	  	  
"
"
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(X 'RŴ X)
−1X 'RŴY

(X 'PVX)
−1X 'PVY



Comparison"

 With	  IVLS	  we	  iden7fy	  a	  “safe”	  subspace	  using	  instruments.	  
Instruments	  are	  variables	  that	  we	  assume	  lie	  within	  the	  
“safe”	  subspace.	  	  
With	  RUV-‐2	  we	  iden7fy	  a	  “safe”	  subspace	  using	  nega7ve	  
controls.	  Nega7ve	  controls	  are	  variables	  that	  we	  assume	  lie	  
within	  the	  “dangerous”	  subspace	  that	  is	  the	  orthogonal	  
complement	  of	  the	  “safe”	  subspace.	  	  
With	  both	  IVLS	  and	  RUV-‐2	  there	  is	  the	  caveat	  that	  X	  must	  not	  
be	  orthogonal	  to	  the	  “safe”	  subspace.	  	  
In	  the	  case	  of	  IVLS,	  this	  means	  that	  V	  must	  be	  reasonably	  
correlated	  with	  X;	  we	  want	  to	  avoid	  weak	  instruments.	  	  
In	  the	  case	  of	  RUV-‐2,	  this	  means	  that	  X	  must	  lie	  outside	  	  
R(W^);	  the	  control	  genes	  must	  not	  be	  influenced	  by	  X.	  
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What next?"

•  Next I’ll give a quick look at some applications of 
these ideas to various examples."

•  In all applications, the main issue is: what do we 
use as negative controls and positive controls, if 
any. "
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MicroArray Quality Control dataset"

•  Two mRNA samples  (Stratagene Universal Human 
Reference RNA, and Ambion Human Brain RNA)"

•  Each sample was assayed 5 times at each of 6 sites 
on the Affymetrix HU133Plus2.0 platform: 60 arrays 
in all."

•  The labs at the different sites have all done a pretty 
good job on their assays. However, one lab lacked 
experience."

•  Here we let our approach discover the site effects, 
not including them as dummy variables (you will see 
why not)."
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The figure (w1) shows clear site effects  
(different colors represent different sites)"

Note the purple: 
whatever factor is 
varying from site to  
site is also varying 
within this site. 
 
Dummy variables 
would not have 
worked as well here.  
 
The effects are small. 
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Removing severe batch effects"
•  Back to our mouse model of retinitis pigmentosa 

(loss of rod and later cone photoreceptors). "

•  Initially no significantly downregulated retinal 
genes were found between 2 and 8 months (left 
volcano plot on the next slide)."

•  Using RUV (right plot on the next slide), we were 
able to find several significantly down-regulated 
retinal, even cone-specific genes, which were 
later confirmed. "
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      Standard analysis                      "
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Standard analysis           Analysis with RUV"
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Back to our 3 treatment vs 3 control  
(in duplicate)  RNA-seq zf experiment"
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PC2 vs PC1 of normalized data  
"
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We’d	  hope	  to	  see	  the	  trt	  vs.	  ctl	  difference	  wouldn’t	  we?	  



Back to combining 3 sets of 3 KO vs 3 WT       
T-cell microarray experiments (with same WT)"
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 Raw            Q-norm            RUVrandom"
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Summary"
   With very simple statistical methods, we can: "
"
•   Use negative control genes to estimate the 

unwanted factors,"
•  Use positive control genes or other methods to 

estimate the number of unwanted factors."
"
   With slightly more complex statistical methods, we 

can avoid estimating the number of unwanted 
factors, and relax the control gene assumption. "

   " 52	  



In later work we"

•  Apply these differential expression ideas in other 
contexts; microarray methylation data, mass spec 
metabolomic data, RNA-seq gene expression data,…"

•  We have analogous results for prediction (classification), 
clustering and correlating"

•  We can combine different studies on the same platform 
(e.g. two or more Affymetrix studies), on similar but 
distinct platforms (e.g. Affymetrix, Agilent and Illumina 
microarray studies), and studies on totally different 
platforms, e.g. GC-MS and LC-MS metabolomic data,  
microarray and RNA-seq data. "
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Clustering or “cleaning”"
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The problem"

    We now assume we don't know X any more, 
e.g. for clustering, or cleaning a dataset. "

"
   We can still estimate W as before, using Yc , but 

then we can't do the regression step. "
  "
  We have several statistical approaches to this 

problem, details omitted. One is RUV-random."
"
"

56	  





We know of 5 age-related mets: 3 going up, 2 going down. 
Look at volcano plots of age effects, adjusted for sex and BMI"

RUV-‐random	  pulls	  two	  	  
mets	  up	  out	  of	  the	  pool	  	  



The biological solution"

"
   Reference controls are simply technical replicates,  

but replicates whose variation might well be 
representative of the very unwanted variation we 
wish to remove. That’s going to be our hope when 
we use them. (We’ll check the results, of course.) 
Any replicates will help, but reference controls have 
a better chance of spanning the space of UV."
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Diagram illustrating a reference control 
in 6 batches of 5 samples of 2 types"
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Note	  that	  a	  naïve	  batch	  adjustment	  here	  	  
would	  equalize	  red	  and	  green,	  on	  average.	  

Walker	  et	  al	  BMC	  Genomics	  (2008)	  



How do we use the reference control 
replicates? Simplest version."

•  Note that the reference control Ys have the same 
(unknown) X, and so their row differences Yd   satisfy"

                           Yd
 = Wdα + εd %

•  Estimate α from the svd of the left hand side, say   
α^ = EkQT, where Yd = PEQT."

•  Plug α^ into the formula  Yc = Wαc + εc  for negative 
control genes, and estimate W by linear regression."

•  Once W and α have been estimated, subtract W^α^.%
      This too works! (but we can do better)"
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