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TOPICS

(1) Overview and introductory comments

(2) Lie algebras: finite and infinite dimensional

(3) Weights, representations and universal enveloping algebra

(4) (Kac–Moody) Chevalley groups

(5) Generators and relations and (Kac–Moody) Groups over Z

(6) Structure constants for Kac–Moody algebras and Chevalley
groups

Today we will answer the question of how to determine the structure
constants for Kac–Moody algebras. We will also discuss some new results in
the finite dimensional case.



STRUCTURE CONSTANTS: DEFINITION

Let g be a Lie algebra or Kac–Moody algebra. Viewing g as a vector
space over C with a bilinear operation

g× g→ g

(x, y) 7→ [x, y]

the structure constants of g are the constants that occur in the
evaluation of the Lie bracket in terms of a choice of basis for g.
If g has basis {xi}i=1,... and Lie bracket [·, ·] defined by

[xi, xj] =
∑

k

nijkxk.

then the elements nijk ∈ C are the structure constants of g and they
depend on the choice of basis for g.



STRUCTURE CONSTANTS: SOME BASIC PROPERTIES

It turns out that we don’t have to use all basis vectors xi in the
expression [xi, xj] =

∑
k nijkxk.

For any pair of roots α, β ∈ ∆ with α+ β ∈ ∆ we have
[gα, gβ ] ⊆ gα+β .

It follows that in the expression
[xα, xβ ] =

∑
k nα,β,k xk,

only one summand nα,βxα+β occurs. We write

[xα, xβ ] = nα,βxα+β .



STRUCTURE CONSTANTS: SOME BASIC PROPERTIES

A system of structure constants over C, satisfying the obvious relations
given by skew symmetry and the Jacobi identity, can be used to fully
determine the multiplication table of a finite dimensional Lie algebra.

For any pair of roots α, β ∈ ∆ with α+ β ∈ ∆ we have
[xα, xβ ] = nα,βxα+β .

If α+ β is not a root, then we set nα,β = 0.
For all α ∈ ∆, [xα, xα] = 0, thus we set nα,α = 0.
Since [xα, xβ ] = −[xβ , xα], we have nα,β = −nβ,α for all roots α, β.

The Jacobi identity gives rise to relations between the structure
constants of the following type:

nα+β,γnα,β = −nβ,γnβ+γ,α.

Two finite dimensional Lie algebras are isomorphic if and only if they have
bases which give rise to the same systems of structure constants.



SIGNS IN THE LIE BRACKET OF sl3(C)

Let sl3(C) denote the Lie algebra of 3×3 matrices of trace 0 over C.
The simple roots are α1, α2. We choose a basis

xα1 =

0 1 0
0 0 0
0 0 0

 , xα2 =

0 0 0
0 0 1
0 0 0

 ,

hα1 =

1 0 0
0 −1 0
0 0 0

 , hα2 =

0 0 0
0 1 0
0 0 −1

 ,

x−α1 =

0 0 0
1 0 0
0 0 0

 , x−α2 =

0 0 0
0 0 0
0 1 0

 .



SIGNS IN THE LIE BRACKET OF sl3(C)

This is a Chevalley basis for sl3(C). Relative to this basis, all structure
constants are integers and we have the Lie bracket:

[hαi , hαj ] = 0

[hαi , xαj ] = 〈hαi , xαj〉xαj

[xαi , xαj ] =


nαi,αj xαi+αj , if αi + αj ∈ ∆,

−hαi , if αi = −αj,

0, otherwise.

Here nαi,αj ∈ {±1}.



STRUCTURE CONSTANTS IN sl3(C) AND SL3(C)
But α1 + α2 is a root in sl3(C) and so we have

[xα1 , xα2 ] = nα1,α2xα1+α2

where xα1+α2 is a root vector for α1 + α2. For sl3(C), we have
nα1,α2 ∈ {±1}. Thus the Lie algebra commutator

[xα1 , xα2 ] = ±xα1+α2

is defined only up to a sign. This sign ambiguity also appears
in the group commutator in the simply connected Chevalley
group SL3(C):

(χα1(s), χα2(t)) = χα1+α2(±st)

It is known that there exists a choice of signs making the
commutation relations consistent with the Lie bracket across sl3(C)
(and hence SL3(C)).



SIGN AMBIGUITY AND CENTRAL EXTENSION

Chevalley showed that the structure constants of any finite
dimensional semisimple Lie algebra are determined up to ±1.
Tits showed that the sign cannot be disregarded due to the existence
of a canonical central extension of the root lattice by a cyclic group of
order 2.
Choosing signs for the Lie bracket corresponds to choosing a section
of the central extension.
This also holds in the infinite dimensional Kac–Moody case.
Determining a consistent system of signs of structure constants in Lie
algebras and Kac–Moody algebras is a persistent problem in Lie
theory, computational algebra, computational number theory and
their applications.





ROOTS OCCUR IN STRINGS
Our method for determining structure constants follows Chevalley’s use of
root strings.
If α, β ∈ ∆, then the α root string through β

−pα,βα+ β, . . . ,−α+ β, β, α+ β, . . . , qαβα+ β
is an unbroken string of roots and

〈β, α〉 = pα,β − qαβ .
For example, the roots of A2 are

α, β, α+ β, −α, −β, −α− β.
The α root string through β is

β, α+ β.
That is, β − α and β + 2α are not roots.



REDUCTION TO RANK 2 ROOT SUBSYSTEMS

To determine structure constants, we will reduce to rank 2 root subsystems.
Let α and β be (real) roots and let ∆(α, β) denote the rank 2 root
subsystem generated by α and β. That is,

∆(α, β) = W{α,β}{α, β},

where W{α,β} is the Weyl group generated by reflections wα and wβ .
The structure constant nα,β in a semisimple Lie algebra or
Kac–Moody algebra may be computed in the rank 2 root subsystem
∆(α, β) generated by α and β.



REDUCTION TO RANK 2 SUBSYSTEMS

The possibilities for rank 2 subsystems ∆(α, β) = W{α,β}{α, β} are
obtained by looking at the classification of rank 2 (generalized)
Cartan matrices:

Rank 2 finite type:

A1 × A1 =

(
2 0
0 2

)
, A2 =

(
2 −1

−1 2

)
, B2 =

(
2 −1

−2 2

)
, G2 =

(
2 −1

−3 2

)

Rank 2 Kac–Moody type:

A(1)
1 =

(
2 −2

−2 2

)
, A(2)

2 =

(
2 −1

−4 2

)
,

H(m) =

(
2 −m

−m 2

)
m∈Z≥3

, H(a, b) =
(

2 −a
−b 2

)
ab>4



CHEVALLEY’S THEOREM

Chevalley’s theorem on structure constants is the following.
Let g be a semisimple Lie algebra. Suppose that α, β, α+ β ∈ ∆. Let

−pα,βα+ β, . . . ,−α+ β, β, β + α, . . . β + qαβα

be the α root string through β. Then there is a basis for g with respect to
which
(1) n−α,−β = nα,β .
(2) nα,β = ±(pα,β + 1).

We write nα,β = sα,β(pα,β + 1) where sα,β ∈ {±1}.
Chevalley’s theorem shows that there is a basis for g with respect to
which the structure constants are integers.
Morita showed that (1) and (2) hold for Kac–Moody algebras when
α, β, α+ β ∈ ∆re.



HOW TO DETERMINE THE STRUCTURE CONSTANTS?

Since nα,β = sα,β(pα,β + 1) where sα,β ∈ {±1} and pα,β is
determined by the α root string through β, to find nα,β we have
to find:
· all pairs of (real) roots whose sum is a (real) root
· all root strings and all pα,β for α, β, α+ β ∈ ∆re

· a system of signs {sα,β | α, β ∈ ∆re} such that nα,β satisfies
relations implied by skew symmetry and the Jacobi identity.



STRUCTURE CONSTANTS IN FINITE DIMENSIONS

The most familiar algorithm for computing structure constants for finite
dimensional simple Lie algebras is given by Carter. This algorithm has been
implemented in GAP by De Graaf and in Magma by Cohen, Haller and
Murray.
There are also algorithms by Gilkey and Seitz and Vavilov for the
exceptional groups En, n = 6, 7, 8. Rylands gave an analogue of these
algorithms for F4 and G2 and her formulas were implemented in
Magma.
For simply laced Lie algebras, Kac and Frenkel and Kac gave an elegant
(implicit) method for determining structure constants, developed further by
Frenkel, Lepowsky and Meurman.
Tits observed that one could compute the structure constants in the
extended Weyl group W̃. This observation has been expanded to an
algorithm by Casselman.



STRUCTURE CONSTANTS: FINITE DIMENSIONAL CASE

We have nα,β = sα,β(pα,β + 1), where pα,β is determined by the α root
string through β.
Kac, Frenkel, Lepowsky and Meurman, Frenkel and Kac implicitly
defined structure constants in terms of bilinear forms s0(α, β) in the
simply laced case (An, Dn, En), where

sα,β = (−1)s0(α,β)

and s0(α, β) satisfies natural conditions arising from skew-symmetry
and the Jacobi identity.
Lepowsky and Primc suggested that bilinear forms for the structure
constants for Bn, G2 could be obtained from their methods.

In joint work with Coulson, Kanade, McRae and Murray, we give
explicit bilinear forms s0(α, β) in many cases.



STRUCTURE CONSTANTS FOR (KAC–MOODY)
CHEVALLEY GROUPS

Let g be a symmetrizable simple Lie algebra or Kac–Moody algebra.
Let GV be the Kac–Moody Chevalley group corresponding to an
integrable highest weight module V. Let α, β be real roots whose sum
α+ β is a real root. Let s, t ∈ C. Then

(χα(s), χβ(t)) =
∏

(mα+nβ)∩∆re
+

χmα+nβ(cα,β,s,ttmsn).

Theorem ([C]) If g is simply laced, then
{(mα+ nβ) ∩∆re

+} ⊆ {α+ β}
(χα(s), χβ(t)) = χα+β(cα,β,s,tst)

and cα,β,s,t = nα,β , the structure constant from [xα, xβ ] = nα,βxα+β .
We have pα,β = 0 thus

cα,β,s,t = sα,β = (−1)s0(α,β)

where s0(α, β) ∈ {±1}.



ROOT STRINGS IN THE RANK 2 KAC–MOODY CASE
Root strings in H(3):

0 1 2 3 4 5 6 7 8 9 10 11 12 13

-4

-3

-2

-1

1

2

3

4

↵1

↵1 + ↵2

↵1 + 2↵2

↵1 + 3↵2

2↵1 + ↵2

2↵1 + 2↵2

2↵1 + 3↵2

2↵1 + 4↵2

2↵1 + 5↵2

3↵1 + ↵2

3↵1 + 2↵2

3↵1 + 3↵2

3↵1 + 4↵2

3↵1 + 5↵2

3↵1 + 6↵2

3↵1 + 7↵2

3↵1 + 8↵2

↵2



NON–SIMPLY LACED RANK 2 KAC–MOODY CASE:
PAIRS OF REAL ROOTS WHOSE SUM IS A REAL ROOT

Joint work with Matt Kownacki, Scott H. Murray and Sowmya Srinivasan
Let g be the Kac–Moody algebra with (generalized) Cartan matrix

H(a, b) =

(
2 −a
−b 2

)
, ab > 4. We prove that if a and b are both

greater than one, then no sum of real roots can be a real root. In the
cases that a or b equal 1, we determine the pairs of short real roots
whose sum is a long real root.



STRUCTURE CONSTANTS AND GROUP COMMUTATORS:
RANK 2 KAC–MOODY CASE

Theorem. (C., Kownacki, Murray and Srinivasan)

A(1)
1 : sum of two real roots is never a real root.

H(m), m ≥ 3: sum of two real roots is never a real root.
H(a, b), ab > 4, a, b 6= 1: sum of two real roots is never a real root.
H(a, 1), a ≥ 5: the sign of nα,β for every pair of real roots α, β with
α+ β real, is independent of every other such nγ,δ . If α and β are
short roots whose sum is long, then pαβ = a− 1, otherwise pαβ = 0.



STRUCTURE CONSTANTS: TWISTED AFFINE CASE,
A(2)

2 = H(4, 1)

Suppose that α, β, α+ β ∈ ∆re. Let nα,β = sα,β(pα,β + 1)

If α and β are short roots whose sum is long, then pα,β = 3 otherwise
pα,β = 0 (CKMS]).
Mitzman constructed Chevalley bases for the affine Kac–Moody
algebras A(1)

1 and A(2)
2 ([Mi]). His work includes a proof of existence

of a cocycle that encodes the structure constants of A(2)
2 . This was

described in more detail by Calinescu, Lepowsky and Milas ([CLM]).



CONSISTENCY OF SIGNS OF STRUCTURE CONSTANTS

(GENERAL CASE)

Conjecture. (C., Coulson, Kanade, McRae and Murray)
Let g be a Kac–Moody algebra. Let

{nα,β = sα,β(pα,β + 1) | α, β, α+ β ∈ ∆re}

be a system of structure constants with signs sα,β computed in the
restriction to the rank two Kac–Moody subalgebra generated by ∆(α, β) (by
the formulas previously described). Then the associated Lie bracket satisfies
skew symmetry and the Jacobi identity.

For α, β, α+ β ∈ ∆re, every structure constant nα,β comes from a rank
2 subsystem ∆(α, β). Since every simple root of g is contained in
some rank 2 subsystem, the rank 2 subsystems generate the entire
root system.

Thus the signs from rank 2 subsystems determine the signs for every
possible pair of real roots whose sum is real.



STRUCTURE CONSTANTS IN GENERAL

Provided our conjecture is proven, this would not be a
complete result: one must redefine structure constants when
any of α, β, α+ β are imaginary roots, as their roots spaces are
then no longer one dimensional.
We have work in progress with Coulson, Kanade and Murray
that achieves this and gives an algorithm for computing
structure constants consistently and efficiently over the whole
Kac–Moody algebra.



Thank you!


	

