

ACE Network Subject Information Guide

STAT4XXX Categorical Data Analysis

Semester 2, 2021

Administration and contact details

Host department	School of Mathematical & Physical Science	
Host institution	University of Newcastle	
Name of lecturer	Eric Beh	
Phone number	02 4921 5113	
Email address	eric.beh@newcastle.edu.au	
Homepage	https://www.newcastle.edu.au/profile/eric-beh	
Name of honours coordinator	Robert King	
Phone number	02 4921 5548	
Email address	robert.king@newcastle.edu.au	
Name of masters coordinator	NA	
Phone number	Click here to enter text.	
Email address	Click here to enter text.	

Subject details

Handbook entry URL	https://www.newcastle.edu.au/degrees/bachelor-
	of-mathematics-honours
Subject homepage URL	NA
Honours student hand-out URL	Contact the Honours Convenor listed above
Start date:	July 19, 2021
End date:	October 29, 2021
Contact hours per week:	2hrs
Census date:	August 13, 2021
Lecture day(s) and time(s):	ТВА
Description of electronic access arrangements	Lectures to be held via zoom. Resources distributed via
for students (for example, WebCT)	email from eric.beh@newcastle.edu.au

S A A C E

Subject content

1. Subject content description

Categorical data abounds in all disciplines as researchers and analysts search for ways of analysing data collected from surveys or questionnaires. Undergraduate courses only provide a cursory glance at how categorical data can be analysed. In this course we will examine some of the core contributions to categorical data analysis with a focus on measures of association, categorical data visualisation and modelling categorical data.

The course will include the following topics

- Visualisation of categorical data
- History and development of contingency tables
- Pearson's chi-squared statistic and related measures
- Features, and variations of the odds ratio for single and stratified data
- Reciprocal averaging and singular value decomposition
- Correspondence analysis
- Modelling categorical data

2. Week-by-week topic overview

Week 1: An overview of categorical data, its history and standard techniques *Week 2*: Analysis of a single categorical variable – goodness-of-fit tests

- *Week 3*: The contingency table, chi-squared statistic & related measures
- *Week 4*: Measures of symmetric association for 2x2 contingency tables
- Week 5: Measures of symmetric association for IxJ contingency tables
- Week 6: Measures of asymmetric association for IxJ contingency tables
- Week 7: Scaling categorical data reciprocal averaging & canonical correlation analysis
- Week 8: Simple correspondence analysis
- Week 9: Non-symmetric correspondence analysis
- Week 10: Multiple correspondence analysis
- Week 11: Models of correlation and association
- Week 12: Log-linear models

Image: Second second

3. Assumed prerequisite knowledge and capabilities

Undergraduate major in statistics. Students must have knowledge of common statistica techniques, especially linear statistical models, chi-squared tests, statistical inference and linear algebra (with an emphasis on vectors and matrices). Students must also have an introductory knowledge of R/Rstudio.

4. Learning outcomes and objectives

On successful completion of this course, students will be able to:

- 1. Gain a deeper understanding of the analysis of categorical data
- 2. Explore more deeply the issue concerned with Pearson's chi-squared statistic and related measures of association that reflect symmetric and asymmetric association
- 3. Apply new statistical tools to numerically and visually analyse multiple categorical variables
- 4. Apply a variety of correspondence analysis techniques
- 5. Model categorical data using association models and log-linear models
- 6. Apply their skills to real-life data using R
- 7. Undertake basic research skills concerned with categorical data analysis

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

AQF Program Learning Outcomes addressed in	Associated AQF Learning Outcome Descriptors		
this subject	for this subject		
Understand some core techniques for analysing	К1		
categorical data			
Understand the interconnectedness of techniques	K1, S1, S2, S3, S5		
used for analysing categorical data			
Be able to identify the most appropriate statistical	S1 A2		
technique required to address practical problems			
involving categorical data			
Understand the strengths, weaknesses and	A2		
alternatives of techniques designed for the			
analysis of categorical data			
Develop independent learning and problem-	S1, S5		
solving skills associated with analysing categorical			
data			
Develop coding skills that produce appropriate	Choose from list below		
(practically relevant) numerical and visual output			
for the analysis of categorical data			
Insert Program Learning Outcome here	Choose from list below		

A A C E

Learning Outcome Descriptors at AQF Level 8 Knowledge K1: coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines K2: knowledge of research principles and methods Skills S1: cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problem with intellectual independence S2: cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas S3: cognitive skills to exercise critical thinking and judgement in developing new understanding S4: technical skills to design and use in a research project S5: communication skills to present clear and coherent exposition of knowledge and ideas to a variety of audiences Application of Knowledge and Skills A1: with initiative and judgement in professional practice and/or scholarship A2: to adapt knowledge and skills in diverse contexts A3: with responsibility and accountability for own learning and practice and in collaboration with others within broad parameters A4: to plan and execute project work and/or a piece of research and scholarship with some independence

5. Learning resources

Test & printed notes: Students are not required to purchase any reference book for this course. Instead lecture notes will be provided. Published articles in commonly available, high-profile, journals will also be made available to students for additional insight and context of the weekly topics; they will need to access this material through their own library (full bibliographic information of each article will be provided)

VE A C E

Software: Students will need to have access to R/Rstudio. They can be freely downloaded from the internet.

6. Assessment

Exam/assignment/classwork breakdown					
Exam	55%	Assignment	45%	Class work	Enter %
Assignment due	dates	Assignment 1	August 20 (Wk 5)	Click here to	Click here to
		Assignment 2	September 17 (Wk 9)	enter a date.	enter a date.
		Assignment 3	October 29 (Wk 13)		
Approximate ex	am date	(Week 2 of UoN exam period)		November 8 – 12	2, 2021

Assignment 1 and 2 require solving specific questions that are of a conceptual, theoretical, practical and computational nature and are aligned with the weekly lecture material (Weeks 1-9 inclusive)

Assignment 3 is a ten-page written assessment that gauges the students broad understanding of the interconnectedness of the weekly topics. This assignment will be based on the full content of the semester (Weeks 1 - 12 inclusive) and will be assessed in terms of ten specific criteria.

Institution honours program details

Weight of subject in total honours assessment at	12.5%
host department	
Thesis/subject split at host department	Thesis = 37.5%, Course work = 62.5%
Honours grade ranges at host department	
H1	85% or above
H2a	75% to 84%
H2b	65% to 74%
Н3	50% to 64%

Institution masters program details

Weight of subject in total masters assessment at	Click here to enter text.
host department	
Thesis/subject split at host department	Click here to enter text.
Masters grade ranges at host department	
H1	Enter range %
H2a	Enter range %
H2b	Enter range %
H3	Enter range %