

ACE Network Subject Information Guide

MATH7907 Advanced Methods in Mathematics 1

Semester 1 2023

Administration and contact details

Host department	School of Mathematical and Physical Sciences
Host institution	Macquarie
Name of lecturer	Paul Bryan
Phone number	
Email address	paul.bryan@mq.edu.au
Homepage	https://pabryan.github.io
Name of honours coordinator	Ji Li
Phone number	
Email address	ji.li@mq.edu.au
Name of masters coordinator	Ji Li
Phone number	
Email address	ji.li@mq.edu.au

Subject details

Handbook entry URL			
Subject homepage URL	https://pabryan.github.io/dg		
Honours student hand-out URL			
Teaching period (start and end date):	20/02/2023-02/06/2023		
Exam period (start and end date):	N/A		
Contact hours per week:	3 (2 x 1.5 hour lectures)		
ACE enrolment closure date:			
Lecture day(s) and time(s):	Thursday 11am-1pm		
	Friday 1pm-3pm		
Description of electronic access arrangements for students (for example, LMS)	Zoom, course webpage		

Subject content

1. Subject content description

We will start with the classical theory of curves and surfaces, but presented in a modern way that leads naturally and directly to the general theory of manifolds and Riemannian geometry. We will develop the formalism of manifolds, differential forms, vector bundles, Riemannian metrics and curvature, then apply these to global topics relating topology and curvature such as the Gauss-Bonnet theorem, classification of constant sectional curvature manifolds, and time permitting some theorems in comparison geometry such as the Bonnet-Myers theorem.

2. Week-by-week topic overview

Week 01: Curves Week 02: Global Curve Theory Week 03: Surfaces Week 04: Geometry and Curvature of Surfaces Week 05: Manifolds Week 06: Manifolds Week 07: Vector fields Week 07: Vector fields Week 08: Tensor Bundles Week 09: Differential Forms Week 10: Riemannian metrics and connections Week 11: Metric space structure Week 12: Intrinsic an Extrinsic curvature Week 13: Global Topics

3. Assumed prerequisite knowledge and capabilities

The prerequisites for the course are linear algebra and multi-variable/vector calculus. Familiarity with topology and analysis, particularly differential equations will also be beneficial but is not necessary.

4. Learning outcomes and objectives

S A A C E

Understand fundamental topics in differential geometry.

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

AQF Program Learning Outcomes addressed in this subject	Associated AQF Learning Outcome Descriptors for this subject
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below

Learning Outcome Descriptors at AQF Level 8 Knowledge K1: coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines K2: knowledge of research principles and methods Skills S1: cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problem with intellectual independence S2: cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas S3: cognitive skills to exercise critical thinking and judgement in developing new understanding S4: technical skills to design and use in a research project S5: communication skills to present clear and coherent exposition of knowledge and ideas to a variety of audiences Application of Knowledge and Skills A1: with initiative and judgement in professional practice and/or scholarship

A2: to adapt knowledge and skills in diverse contexts A3: with responsibility and accountability for own learning and practice and in collaboration

with others within broad parameters

A4: to plan and execute project work and/or a piece of research and scholarship with some independence

5. Learning resources

http://pabryan.github.io/dg

6. Assessment

Exam/assignment/classwork breakdown						
Exam		Assignment	100	Class work		
Assignment due	dates	Week 4	Week 7	Week 10	Week 13	
Approximate exam date			N/A			

Institution honours program details

Weight of subject in total honours assessment at	12.5%
host department	
Thesis/subject split at host department	
Honours grade ranges at host department	
H1	85
H2a	75
H2b	65
Н3	50

Institution masters program details

Image: Second state Image: Second state Image: Second state Image: Second state

Weight of subject in total masters assessment at	12.5%
host department	
Thesis/subject split at host department	
Masters grade ranges at host department	
H1	85
H2a	75
H2b	65
H3	50