

AMSI ACE

ACE Network Subject Information Guide

Mathematical Epidemiology

Semester 2, 2025

Administration and contact details

Host Department	School of Science (Mathematical Sciences)	
Host Institution	RMIT University	
Name of lecturer	Associate Professor Stephen Davis	
Phone number	03 9925 2278/0404 35 1812	
Email Address	stephen.davis@rmit.edu.au	
Homepage	https://www.rmit.edu.au/staff/profile?id=stephen.davis	
Name of Honours coordinator	Associate Professor Stephen Davis	
Phone number	03 9925 2278/0404 35 1812	
Email Address	stephen.davis@rmit.edu.au	

Subject details

Handbook entry URL	NA
Subject homepage URL	NA
Honours student hand-out URL	NA
Start date:	Tuesday 22 nd of July, 2025
End date:	Wednesday 15 th of October, 2025
Contact hours per week:	Two 1-hour lectures + 3 hours independent study
Lecture day and time:	Tuesday 12 – 1pm, Wednesday 12 – 1pm
Description of electronic access arrangements for	Course materials will be shared via DropBox;
students (for example, WebCT)	lectures and lectorials will be on Zoom.

Subject content

1. Subject content description

This course will immerse students in the epidemic theory that underpins our management of infectious diseases of humans and animals, including of course the ongoing global pandemic caused by the SARS-CoV-2 virus. The course will cover simple models for closed populations

of hosts, compartment models, multi-host pathogens, next-generation matrices, spatial dynamics, within-host dynamics and the type reproduction number.

2. Week-by-week topic overview

RMIT Week	Week starting (Monday)	Topics covered	Sections of the Lecture Notes
1	22 July 2024	-	
2	29 July 2024	R0; r; doubling time	1.1 1.1.5
3	5 August 2024	SIR model; final size equation	1.2 1.2.1
4	12 August 2024	Solving the SIR model; SIR model with births and deaths; stability analysis	1.2.21.2.3, 2.12.2.3
5	19 August 2024	Mean age at infection; SEI model for canine rabies	2.2.4
6	26 August 2024	Probability of extinction; the dispersion parameter k; heterogeneity and superspreaders	3
Mid- Seme ster Break			
7	9 September 2024	Multi-host disease systems; Next Generation Matrix	4.14.2

8	16 September 2024	Type reproduction number; NGM recipe for compartment models	4.34.4
9	23 September 2024	Waning immunity	-
10	30 September 2024	Seasonality; Cyprinid Herpes Virus 3	5.1 5.2.2
11	7 October 2024	Spatial spread; percolation; plague in Kazakhstan	6.1 6.4.3
12	14 October 2024	Within-host infection dynamics	-
13	21 October 2024	Models of Mosquito- borne disease	-

3. Assumed prerequisite knowledge and capabilities

Students will be assumed to be familiar with systems of differential equations and the techniques used to analyse their behaviour and dynamics; it is advantageous to have completed an undergraduate course in differential equations or modelling with differential equations.

It is also assumed that students are comfortable with writing/modifying code in one or more programming environments such as R or Matlab.

4. Learning outcomes and objectives

Students will acquire a working knowledge of the mathematical techniques used to generate insight into biological systems. They will gain experience in translating the known biological properties of a system into a set of mathematical equations (a model) and vice versa be able to interpret equations in terms of the biology they capture. Students will be able to use epidemiological reasoning to characterise a pathogen in terms of its basic reproduction ratio

and understand the usefulness and limitations of this quantity. Students will be able to numerically solve systems of differential equations to explore their behaviour and dynamics and draw biological conclusions.

Associated AQF Learning Outcome Descriptors for this subject	
 S1: cognitive skills to review, analyse, consolidat and synthesise knowledge to identify and provid solutions to complex problem with intellectual independence 	
S2: cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas	
A2: to adapt knowledge and skills in diverse contexts	

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

Knov	vledge
K1: c	oherent and advanced knowledge of the underlying principles and concepts in one or
more	disciplines
K2: k	nowledge of research principles and methods
Skills	
S1: c	ognitive skills to review, analyse, consolidate and synthesise knowledge to identify and
provi	de solutions to complex problem with intellectual independence
S2: c	ognitive and technical skills to demonstrate a broad understanding of a body of
know	ledge and theoretical concepts with advanced understanding in some areas
S3: c	ognitive skills to exercise critical thinking and judgement in developing new
unde	rstanding
S4: te	echnical skills to design and use in a research project
S5: c	ommunication skills to present clear and coherent exposition of knowledge and ideas t
a var	iety of audiences
Appl	ication of Knowledge and Skills
A1: v	vith initiative and judgement in professional practice and/or scholarship
A2: t	o adapt knowledge and skills in diverse contexts
A3: v	vith responsibility and accountability for own learning and practice and in collaboratior
with	others within broad parameters
A4: t	o plan and execute project work and/or a piece of research and scholarship with some
inde	pendence

5. Learning resources

Lecture notes, recommended journal articles and recommended books will be made available over the course of the semester.

6. Assessment

Exam/assignment/classwork breakdown					
Exam	40%	Assignment	20%+20%+20%	Class work	-
Assignmen	t due dates	27/08/2025	24/09/2025	22/10/2025	
Approximate exam date 3/11/2025-6/11/2025			/11/2025		

Institution Honours program details

Weight of subject in total honours assessment at	12.5%
host department	
Thesis/subject split at host department	37.5% thesis/62.5% course work
Honours grade ranges at host department:	
H1	80-100 %
H2a	75-79 %
H2b	70-74 %
H3	65-69 %