BACKGROUND MATHEMATICS -PRACTICE QUESTIONS

- 1. Integer arithmetic
 - (a) Is 3 a common divisor of 72 and 81? Is it the greatest common divisor (gcd)? Justify your answer.
 - (b) Using the euclidean algorithm, find the gcd of each of the following pairs of integers and in each case express this gcd as a linear combination of the two integers:
 - i. 122 and 723
 - ii. 235 and 115 $\,$
 - iii. $42 \ \mathrm{and} \ 192$
- 2. Modular arithmetic for integers
 - (a) Test whether the following statements are true or false. Justify your answer in each case.
 - i. $26 = 56 \pmod{3}$
 - ii. $19 = -156 \pmod{34}$
 - iii. $-7 = -23 \pmod{11}$
 - (b) Reduce the following integers
 - i. $99 \mod 12$
 - ii. $46 \mod 5$
 - iii. $-46 \operatorname{mod} 5$
 - (c) Reduce the following operations:
 - i. $(17 + 23 5) \mod 11$
 - ii. $12 \times 8 \mod 13$

iii.	$5^7 \mod 24$	(Hint: What is $5^2 \mod 24$?)
iv.	$5^7 \operatorname{mod} 26$	(Hint: again consider $5^2 \mod 26$?)

(d) Compute the addition and multiplication tables for the elements of

i. Z₅

ii. \mathbb{Z}_8 .

In each case list which elements have additive inverses and which have multiplicative inverses.

- (e) Compute the addition and multiplication tables for the *non-zero* elements of
 - i. \mathbb{Z}_6

ii. \mathbb{Z}_7 .

In each case list which elements have additive inverses and which have multiplicative inverses.

- (f) Find all the distinct multiplicative powers of 3, that is, numbers which can be expressed in the form $3^i, i = 0, 1, 2, ...,$ in
 - i. Z₇
 - ii. \mathbb{Z}_9 .
- (g) Determine whether the multiplicative inverse of
 - i. 7 in Z₄₃
 ii. 4 in Z₁₆

exists.

Using an extension of the euclidean algorithm compute these inverses (if they exist).

- (h) Compute $\frac{2}{3}$ and $\frac{3}{5}$ in \mathbb{Z}_{11} , that is, find the numbers representing 2.3⁻¹ and 3.5^{-1} .
- 3. Arithmetic for real polynomials, $\mathbb{R}[x]$
 - (a) Compute the following in $\mathbb{R}[x]$:
 - i. $(x-1)(2x^2+x-1)(3x^3+2x+4)(x-1)$ ii. $(x^5+2x^3-x^2+x-1)/(x^3+3x+1)$
 - (b) Find (by trial and error) a root of x³ 7x² + 15x 9 in ℝ
 Use this root to find a corresponding linear factor.
 Hence find a non-trivial factorization of f(x).
 Finally find all roots of f(x). Justify your answer (i.e. give reasons why no other roots exist).
 - (c) Is $x^3 7x^2 + 15x 9$ reducible over \mathbb{R} ? Is $x^5 + 3x^4 + 2x^3 - 2x^2 - 3x - 1$ irreducible over \mathbb{R} ? Give only a yes/no answer in each of the above cases.

(d) Reduce the polynomial $x^5 + 2x^4 - x^3 - 2x^2 - 3x - 1 \mod x^3 - 2x^2 + 8x - 3$

4. Arithmetic for binary polynomials $\mathbb{Z}_2[x]$

- (a) Compute the following in Z₂[x]:
 i. (x² + x + 1) + (x³ + x + 1) + (x + 1)
 ii. (x² + x + 1)(x³ + x + 1)(x + 1)
 iii. (x⁵ + x³ + x² + 1)/(x² + x + 1)
- (b) Divide $x^2 + x + 1$ into $x^5 + x^3 + x^2 + 1$ using polynomial long division. What is the quotient and remainder?
- (c) Given $f(x) = x^4 + x^3 + x$ and $g(x) = x^2 + x + 1$ polynomials in $\mathbb{Z}_2[x]$. Using long division of polynomials, find polynomials q(x) and r(x) such that f(x) = q(x) g(x) + r(x) where $\deg(r(x)) < \deg(g(x))$.
- (d) Given $a(x) = x^5 + x^3 + x + 1$ and $b(x) = x^2 + 1$ polynomials in $\mathbb{Z}_2[x]$. Using the euclidean algorithm, find gcd(a(x), b(x)) and then polynomials s(x) and t(x) such that gcd(a(x), b(x)) = s(x)a(x) + t(x)b(x).
- (e) List all the polynomials of degree 4 with coefficients in \mathbb{Z}_2 , and then decide for each such polynomial p(x), whether or not the equation p(x) = 0 has a solution x in \mathbb{Z}_2 .

What do we call such solutions?

Determine whether each polynomial has linear factors.

Furthermore determine whether each polynomial is reducible or not.

- (f) Reduce the polynomial $x^6 + x^4 + x^3 + x^2 + x \mod x^3 + x^2 + x + 1$ What is the highest degree that the reduced form of an arbitrary polynomial modulo $x^3 + x^2 + x + 1$ can have?
- (g) Compute $((x-1)(x^2+x-1)) + (x^3+x+1) \mod x+1$
- 5. Finite fields

Refer to the handout giving the construction of GF(8) in terms of the irreducible polynomial $x^3 + x + 1$ and the primitive element α . That is, GF(8) = $\{a + b\alpha + c\alpha^2, a, b, c \in \mathbb{Z}_2, \alpha^3 + \alpha + 1 = 0\}$.

- (a) Construct a 4-column table describing GF(8) as follows: list all the binary strings of length 3; for each such string *abc* list the corresponding polynomial $a + b\alpha + c\alpha^2$; where possible, describe each such string as a power α^i of α ; and give its discrete logarithm *i*.
- (b) Using your table, or otherwise, find the following three elements of GF(8) as binary strings:
 - (i) $(1 + \alpha + \alpha^2)^3$ (ii) $(1 + \alpha^2)(1 + \alpha)$ (iii) $(\alpha + \alpha^2)^{-1}$.